GRAPHENE CONJUGATED USNIC ACID NANO-FORMULATION FOR THE TREATMENT OF TOPICAL FUNGAL INFECTION

Author(s):  
NIMESH KUMAR DUBEY ◽  
SHANTI BHUSHAN MISHRA ◽  
ALOK MUKERJEE ◽  
AKANKSHA SINGH

Objective: The study aims to investigate the antifungal response of the dug usnic acid with the carrier graphene. Methods: Nano-precipitation method by sonication was adopted to formulate the conjugate. SEM test was performed to check the shape and average size of the conjugate. FTIR test was performed for the chemical interaction between the drug and the carrier. Ointment was prepared by the fusion method and the viscosity test was performed by Brookfield viscometer. Spreadability test was performed by slide method. Animal activity was performed to confirm the antifungal effect of the formulated nano-conjugate. Statistical analysis was done by Anova. Results: SEM study shows that the conjugate is in the nano range and possess a spherical shape. FTIR study shows no interaction between the drug and the carrier. The result of in vitro drug release study shows that the conjugate posses a higher drug release rate as compared to the drug alone. Topical drug administration is more suitable for the treatment of the fungal infection, so the nano-conjugate was incorporated into the ointment by geometric mixing. The viscosity and the spreadability test were performed on the different formulations of the ointment and the suitable one was selected for the topical administration. Anti-fungal study had been performed on the Wistar albino rats for 6 d. Skin culture of rats was performed for the formation of the fungal colonies. Statistical analysis by Anova gives p<0.001. It was found that the normal form of usnic acid, graphene and the nano form both possess anti-fungal activity as 3/6 and 2/6 experimental animals are cured by normal formulation and nano-formulation. Conclusion: The present anti-fungal study revealed that the nano-form of the conjugate possess higher anti-fungal activity than the normal formulation of usnic acid with graphene.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1087
Author(s):  
Wael A. Mahdi ◽  
Sarah I. Bukhari ◽  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
Ameeduzzafar Zafar ◽  
...  

The present study aims to prepare and optimize butenafine hydrochloride NLCs formulation using solid and liquid lipid. The optimized selected BF-NLCopt was further converted into Carbopol-based gel for topical application for the treatment of fungal infection. Box Behnken design was employed to optimize the nanostructure lipids carriers (NLCs) using the lipid content (A), Tween 80 (B), and homogenization cycle (C) as formulation factors at three levels. Their effects were observed on the particle size (Y1) and entrapment efficiency (Y2). The selected formulation was converted into gel and further assessed for gel characterization, drug release, anti-fungal study, irritation study, and stability study. The solid lipid (Compritol 888 ATO), liquid lipid (Labrasol), and surfactant (tween 80) were selected based on maximum solubility. The optimization result showed a particle size of 111 nm with high entrapment efficiency of 86.35% for BF-NLCopt. The optimized BF-NLCopt converted to gel (1% w/v, Carbopol 934) and showed ideal gel evaluation results (drug content 99.45 ± 2.11, pH 6.5 ± 0.2, viscosity 519 ± 1.43 CPs). The drug release study result depicted a prolonged drug release (65.09 ± 4.37%) with high drug permeation 641.37 ± 46.59 µg (32.07 ± 2.32%) than BF conventional gel. The low value of irritation score (0.17) exhibited negligible irritation on the skin after application. The anti-fungal result showed greater efficacy than the BF gel at both time points. The overall conclusion of the results revealed NLCs-based gel of BF as an ideal delivery system to treat the fungal infection.


2020 ◽  
Vol 12 ◽  
Author(s):  
Jitendra Naik ◽  
Rutuja Deshmukh ◽  
Rahul Rajput ◽  
Satyendra Mishra ◽  
Mukesh Singh

Background-: Glimepiride is a third generation, oral anti-diabetic sulfonylurea drug; generally recommended for the treatment of type –II diabetes. A biocompatible polymer, Eudragit RS 100 is widely used for the preparation of targeted and time-controlled release of drugs. Glimepiride is encapsulated using Eudragit RS 100 for the sustained release delivery. Objective-: To develop sustained release microparticles of Glimepiride using micro reactor technology to reduce the dosing frequency. Method-: Microreactor precipitation method was used to develop sustained release microparticles of Glimepiride. Plackett-Burman design was employed for the optimization of all the parameters including inner diameter of silicon tubing, flow rate of solvent as well as antisolvent, length of tubing and concentration of polymer etc. Microparticles prepared were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy and In vitro drug release as well as release kinetics study. Results-: Placket Burman design was found to be effective for comparing more than two parameters at a time and gives the effect of parameters on design. The parameters A, B, C, D, E and J were synergistically affected the encapsulation efficiency. FE-SEM demonstrated the smooth and spherical nature of particles. Fourier transformed infrared spectroscopy showed the absence of chemical interaction between polymer and drug; X-ray diffraction results showed that the decrease in crystallinity of pure drug when transformed to encapsulated drug loaded microparticles. The sustained drug release was observed for 12 h. Conclusion-: Prepared Glimepiride loaded sustained release microparticles were followed the first order release kinetics. The developed formulation could be reduce dose frequency and improve the patient compliance.


Planta Medica ◽  
2006 ◽  
Vol 72 (11) ◽  
Author(s):  
JK Ketzis ◽  
N Nolard ◽  
NS Ryder

2019 ◽  
Vol 9 (01) ◽  
pp. 58-64
Author(s):  
Senthilnathan B ◽  
Billy Graham R ◽  
Chaarmila Sherin C ◽  
Vivekanandan K ◽  
Bhavya E

Objective: Drug targeting is the capacity of the dosage form. In which the therapeutic agent acts specifically to desired site of action in the non-targeted tissue with the help of Nano particles is called as the drug targeting. IMATINIB is a used to treat cancer by chemo therapy. Cancers like chronic myeloid leukemia cancer (CML) and acute lymphoblastic leukemia cancer (ALL) and other specific types of gastrointestinal stromal cell tumor (GIST) systemic mast cell disease and Bone marrow failure disorder. It is administered by oral root. For ATP, Tyrosine kinase is act as a binding site. Methodology: The drug IMATINIB is loaded in the polymer chitosan, poly-(D) glucosamine is a bio compactible, bio degradable, nontoxic, antimicrobial and soluble in solvents. This preparation is done by emulsion-droplet coalescence method. Content of the Drug, Size of the particle and Zeta potential, Encapsulation efficiency and Drug release testing are described for this formulation in this study. Results: The Imatinib Nano particles were formulated and evaluated for its invitro drug release profile. Based on the invitro drug release profile of Imatinib nano particles formulation (INP1 – INP5) formulation INP3 was selected as the best formulation in which the particle size was 285.9nm. The invitro % drug release of INP3 formulation was 99.76 ± 0.82 and it was found to be the suitable formulation to manage the cancer. Conclusion: Hence it is concluded that the newly formulated controlled release nanoparticle drug delivery system of Imatinib may be idol and effective by allowing the drug to release continuously for 24 hrs.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


2019 ◽  
Vol 9 (3) ◽  
pp. 248-263 ◽  
Author(s):  
Ashish K. Parashar ◽  
Preeti Patel ◽  
Arun K. Gupta ◽  
Neetesh K. Jain ◽  
Balak Das Kurmi

Background: The present study was aimed at developing and exploring the use of PEGylated Poly (propyleneimine) dendrimers for the delivery of an anti-diabetic drug, insulin. Methods: For this study, 4.0G PPI dendrimer was synthesized by successive Michael addition and exhaustive amidation reactions, using ethylenediamine as the core and acrylonitrile as the propagating agent. Two different activated PEG moieties were employed for PEGylation of PPI dendrimers. Various physicochemical and physiological parameters UV, IR, NMR, TEM, DSC, drug entrapment, drug release, hemolytic toxicity and blood glucose level studies of both PEGylated and non- PEGylated dendritic systems were determined and compared. Results: PEGylation of PPI dendrimers caused increased solubilization of insulin in the dendritic framework as well as in PEG layers, reduced drug release and hemolytic toxicity as well as increased therapeutic efficacy with reduced side effects of insulin. These systems were found to be suitable for sustained delivery of insulin by in vitro and blood glucose-level studies in albino rats, without producing any significant hematological disturbances. Conclusion: Thus, surface modification of PPI dendrimers with PEG molecules has been found to be a suitable approach to utilize it as a safe and effective nano-carrier for drug delivery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Liao ◽  
Xuexiang Ren ◽  
Quan Gao ◽  
Niuniu Liu ◽  
Feng Tang ◽  
...  

AbstractMoso bamboo (Phyllostachys pubescens, Gramineae) is a well-known medicinal and edible plant found in China with various bioactivities, but few systematic studies address the utilization of its anti-fungal activity. The extract of moso bamboo leaf showed good anti-fungal activity to Phytophthora capsici, Fusarium graminearum, Valsa mali Miyabe et Yamada, Botryosphaeria dothidea, Venturia nashicola, and Botrytis cinerea Pers, with inhibitory rate of 100.00%, 75.12%, 60.66%, 57.24%, 44.62%, and 30.16%, respectively. Anti-fungal activity was different by the difference of samples picking time and location. The extract showed good synergistic effects with carbendazim at the ratios of 9:1 and 15:1 (extract : carbendazim), and the co-toxicity coefficients were 124.4 and 139.95. Compound 2 was isolated and identified as the main active component, with the EC50 value of 11.02 mg L−1. Then, the extract was formulated as a 10% emulsion in water, which was stable and had no acute toxic effects. Moreover, a field trial about this formulation was assayed to control pepper phytophthora blight, with the control effect of 85.60%. These data provided a better understanding of the anti-fungal activity and relevant active component of moso bamboo leaf extract. Taken together, our findings illustrated that bamboo leaf extract could be developed and utilized as a botanical fungicide or fungicide adjuvant.


2009 ◽  
Vol 74 (1) ◽  
pp. 304-308 ◽  
Author(s):  
Sara Fateixa ◽  
Márcia C. Neves ◽  
Adelaide Almeida ◽  
João Oliveira ◽  
Tito Trindade

Sign in / Sign up

Export Citation Format

Share Document