Impact of depression and stress on placental DNA methylation in ethnically diverse pregnant women

Epigenomics ◽  
2021 ◽  
Author(s):  
Markos Tesfaye ◽  
Suvo Chatterjee ◽  
Xuehuo Zeng ◽  
Paule Joseph ◽  
Fasil Tekola-Ayele

Aim: To investigate the association between placental genome-wide methylation at birth and antenatal depression and stress during pregnancy. Methods: We examined the association between placental genome-wide DNA methylation (n = 301) and maternal depression and stress assessed at six gestation periods during pregnancy. Correlation between DNA methylation at the significantly associated CpGs and expression of nearby genes in the placenta was tested. Results: Depression and stress were associated with methylation of 16 CpGs and two CpGs, respectively, at a 5% false discovery rate. Methylation levels at two of the CpGs associated with depression were significantly associated with expression of ADAM23 and CTDP1, genes implicated in neurodevelopment and neuropsychiatric diseases. Conclusion: Placental epigenetic changes linked to antenatal depression suggest potential fetal brain programming. Clinical trial registration number: NCT00912132 (ClinicalTrials.gov)

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2189-2189
Author(s):  
Martin F Kaiser ◽  
Alexander Murison ◽  
Charlotte Pawlyn ◽  
Eileen M Boyle ◽  
David C Johnson ◽  
...  

Abstract Introduction Multiple myeloma is a clinically highly heterogeneous disease, which is reflected by both a complex genome and epigenome. Dynamic epigenetic changes are involved at several stages of myeloma biology, such as transformation and disease progression. Our previous genome wide epigenetic analyses identified prognostically relevant DNA hypermethylation at specific tumor suppressor genes (Kaiser MF et al., Blood 2013), indicating that specific epigenetic programming influences clinical behavior. This clinically relevant finding prompted further investigation of the epigenomic structure of myeloma and its interaction with genetic aberrations. Material and Methods Genome wide DNA methylation of CD138-purified myeloma cells from 464 patients enrolled in the NCRI Myeloma XI trial at presentation were analyzed using the high resolution 450k DNA methylation array platform (Illumina). In addition, 4 plasma cell leukemia (PCL) cases (two t(11;14) and two (4;14)) and 7 myeloma cell lines (HMCL) carrying different translocations were analysed. Analyses were performed in R Bioconductor packages after filtering and removal of low quality and non-uniquely mapping probes. Results Variation in genome wide DNA methylation was analyzed using unsupervised hierarchical clustering of the 10,000 most variable probes, which revealed epigenetically defined subgroups of disease. Presence of recurrent IGH translocations was strongly associated with specific epigenetic profiles. All 60 cases with t(4;14) clustered into two highly similar sub-clusters, confirming that overexpression of the H3K36 methyltransferase MMSET in t(4;14) has a defined and specific effect on the myeloma epigenome. Interestingly, HMCLs KMS-11 and LP-1, which carry t(4;14), MM1.S, a t(14;16) cell line with an E1099K MMSET activating mutation as well as two PCLs with t(4;14) all clustered in one sub-clade. The majority (59/85) of t(11;14) cases showed global DNA hypomethylation compared to t(4;14) cases and clustered in one subclade, indicating a epigenetic programming effect associated with CCND1, with a subgroup of t(11;14) cases showing a variable DNA methylation pattern. In addition to translocation-defined subgroups, a small cluster of samples with a distinct epigenetic profile was identified. In total 7 cases with a shared specific DNA methylation pattern (median inter-sample correlation 0.4) were identified. The group was characterized by DNA hypermethylation (4,341 hypermethylated regions vs. 750 hypomethylated regions) in comparison to all other cases. Intersection of regions hypermethylated in this subgroups with ENCODE datasets revealed mapping to poised enhancers and promoters in H1-hESC, indicating functionally relevant epigenetic changes. Gene set enrichment analysis (KEGG) demonstrated enrichment of developmental pathway genes, e.g. Hedgehog signaling (adj p=5x10exp-13), amongst others and all four HOX clusters were differentially methylated in this group. Of note, three of seven cases in this subgroup carried a t(11;14) and all t(11;14) or t(11;14)-like HMCLs clustered closely together with these patient cases, but not with the cluster carrying the majority of t(11;14) myeloma or t(11;14) PCLs. This potentially indicates that t(11;14) HMCL could be derived from a subgroup of patients with specific epigenetic characteristics. Conclusion Our results indicate that the recurrent IGH translocations are fundamentally involved in shaping the myeloma epigenome through either direct upregulation of epigenetic modifiers (e.g. MMSET) or through insufficiently understood mechanisms. However, developmental epigenetic processes seem to independently contribute to the complexity of the epigenome in some cases. This work provides important insights into the spectrum of epigenetic subgroups of myeloma and helps identify subgroups of disease that may benefit from specific epigenetic therapies currently being developed. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.


Oncotarget ◽  
2021 ◽  
Author(s):  
Marpe Bam ◽  
Sreenivasulu Chintala ◽  
Kaleigh Fetcko ◽  
Brooke Carmen Williamsen ◽  
Seema Siraj ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2329-2329
Author(s):  
Mira Jeong ◽  
Min Luo ◽  
Deqiang Sun ◽  
Gretchen Darlington ◽  
Rebecca Hannah ◽  
...  

Abstract Abstract 2329 Age is the most important risk factor for myelodysplastic syndrome (MDS), a premalignant state that transforms into acute myelogenous leukemia in one third of cases. Indeed with normal aging, hematopoietic stem cell (HSC) regenerative potential diminishes and differentiation skews from lymphopoiesis toward myelopoiesis. The expansion in the HSC pool with aging provides sufficient but abnormal blood production, and animals experience a decline in immune function. Previous studies from our lab established that the DNA methyltransferase 3a (Dnmt3a) enables efficient differentiation by critically regulating epigenetic silencing of HSC genes (Challen et al. 2012) Interestingly, Dnmt3a expression is decreased in old HSCs, leading us to hypothesize that epigenetic changes in old HSCs may partially mimic the changes seen in Dnmt3a mutant HSCs. We propose that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging and MDS, which is characterized by frequent epigenetic abnormalities. In this study, we investigated genome-wide DNA methylation and transcripts by whole genome bisulfite sequencing (WGBS) and transcriptome sequencing (mRNA-seq)in young and old HSCs. For WGBS, we generated ∼600M raw reads resulting in ∼ 60 raw Gb of paired-end sequence data and aligned them to either strand of the reference genome (mm9), providing an average 40-fold sequencing depth. Globally, there was a 1.1% difference in the DNA methylation between young and old HSCs. Of these differences, 38% (172,609) of the CpG dinucleotides were hypo-methylated, and 62% (275,557) were hyper-methylated in old HSCs. To understand where the methylation changes predominantly occurred, the genome was subdivided into 77 features. Among these features, SINEs, especially Alu elements, exhibited the highest level of DNA methylation (90.94% in young HSCs, and 91.87% in old HSCs). CpG islands (CGIs) adjacent to the transcription start sites (TSS) exhibited the lowest level of DNA methylation (2.02% in young HSCs, and 2.11% in old HSCs). Interestingly strong hypo-methylation was observed in ribosomal RNA regions (68.04% in young HSCs, 59.04% in old HSCs), and hyper-methylation was observed in LINEL1 repetitive elements (88.62% in young HSCs, 90.12% in old HSCs). Moreover, the examination of differentially methylated promoters identified enrichment of developmentally important transcription factors such as Gata2, Runx1, Gfi1b, Erg, Tal1 Eto2, Cebpa and Pu.1. Additionally, we compare our ∼10,000 differentially methylation regions (DMRs, regions with clustered DNA methylation changes) with a chip-seq data set containing binding of 160 ChIP-seq analyses of hematopoietic transcription factors in different hematopoietic cells. We found significant overlaps between DMRs and transcription factor binding regions. We found DMRs which were hypermethylated showed association with differentiation-promoting Ets factors, in particular Pu.1 from a range of different blood cell types. In contrast, hypomethylated DMRs showed associations with HSC-associated transcription factors such as Scl and Gata2. Further examination of the differentially methylated gene bodies, intragenic and intergenic DMRs identified some previously noted targets for epigenetic silencing or alteration in AML and also novel transcripts including long non-coding RNAs (lincRNA) and upstream regulatory elements (URE). We found significant correlation between RNA-seq expression and DMRs within +1kb upstream of TSS. RNA-sequencing provided complementary and distinct information about HSC aging. We identified differentially expressed genes, novel RNA transcripts, differential promoter, coding sequence, and splice variant usage with age. Gene set enrichment analysis of up- and down- regulated genes, revealed ribosomal protein and RNA metabolism as critical contributors to HSC aging. In conclusion, our study marks a milestone in the mouse HSC epigenome, reporting the first complete methylome and transcriptome of pure HSC using whole-genome bisulfite sequencing and RNA-seq. These provide novel information about the magnitude and specificity of age-related epigenetic changes in a well-defined HSC population. Understanding the roles of DNA methylation and transcription in normal HSC function will allow for greater therapeutic exploitation of HSCs in the clinic. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ainash Childebayeva ◽  
Taylor Harman ◽  
Julien Weinstein ◽  
Trevor Day ◽  
Tom D. Brutsaert ◽  
...  

The individual physiological response to high-altitude hypoxia involves both genetic and non-genetic factors, including epigenetic modifications. Epigenetic changes in hypoxia factor pathway (HIF) genes are associated with high-altitude acclimatization. However, genome-wide epigenetic changes that are associated with short-term hypoxia exposure remain largely unknown. We collected a series of DNA samples from 15 participants of European ancestry trekking to Everest Base Camp to identify DNA methylation changes associated with incremental altitude ascent. We determined genome-wide DNA methylation levels using the Illumina MethylationEPIC chip comparing two altitudes: baseline 1,400 m (day 0) and elevation 4,240 m (day 7). The results of our epigenome-wide association study revealed 2,873 significant differentially methylated positions (DMPs) and 361 significant differentially methylated regions (DMRs), including significant positions and regions in hypoxia inducible factor (HIF) and the renin–angiotensin system (RAS) pathways. Our pathway enrichment analysis identified 95 significant pathways including regulation of glycolytic process (GO:0006110), regulation of hematopoietic stem cell differentiation (GO:1902036), and regulation of angiogenesis (GO:0045765). Lastly, we identified an association between the ACE gene insertion/deletion (I/D) polymorphism and oxygen saturation, as well as average ACE methylation. These findings shed light on the genes and pathways experiencing the most epigenetic change associated with short-term exposure to hypoxia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2670-2670
Author(s):  
Allison E Ashley-Koch ◽  
Melanie Garrett ◽  
Karen Soldano ◽  
Latorya A. Barber ◽  
Marilyn J. Telen

Abstract Abstract 2670 Introduction: Hydroxyurea (HU) is currently the only pharmacologic agent widely used to ameliorate the symptoms of sickle cell disease (SCD). The clinical effects of HU are diverse, including the well-known increase in levels of fetal hemoglobin (HbF), effects on leukocyte and platelet counts, and down-regulation of red cell adhesion despite increased expression of some adhesion receptors. However, the precise mechanisms by which HU exerts its ameliorative and pleiotropic actions are not well understood. HU is primarily thought to inhibit DNA replication and cause cell cycle arrest due to inhibition of ribonucleotide reductase (Yarbro, 1992). This mechanism is likely how HU exhibits its ameliorative effects in myeloproliferative conditions. But it is not as clear how this action results in an increase in the percentage of red blood cells that express a large percentage of HbF (Platt, 2008). Previous evidence suggests that HU may induce epigenetic (specifically, hypermethylation) changes to DNA (Nyce, 1989). Thus, we hypothesized that HU may increase HbF levels and cause other systemic changes through epigenetic mechanisms. Methods: To test the hypothesis that HU usage is associated with alterations in DNA methylation, we examined DNA samples from 24 adult patients with SCD, 12 of whom were taking HU at the time of DNA collection and 12 of whom were not. DNA from each individual was pre-treated with bisulfite (Zymo Research) and assessed for methylation levels at 27,578 CpG sites in 14,495 genes using the Illumina HumanMethylation27 BeadChip. One sample (off HU) failed to undergo a successful bisulfite DNA conversion and was subsequently removed from analysis. The relative levels of methylation (β) were calculated as the ratio of methylated probe signal to total locus signal intensity. Linear regression (PROC GLM, SAS version 9.1.3, Cary, NC) was used to test for differences in methylation (β) as a function of HU usage, controlling for sex and age. Results: On average, patients using HU had higher mean levels of methylation genome-wide compared with patients not taking HU, although the difference was not statistically significant, likely due to the small number of patients examined. Using the Benjamini-Hochberg false discovery correction for multiple testing and setting a stringent corrected p-value threshold of 0.05, we identified 247 out of the approximately 27,000 CpG sites that were differentially methylated as a function of HU usage. Eight CpG sites met a very stringent Bonferroni correction and represented a functionally diverse set of genes, including ones that encode a phosphatase, influence neural outgrowth, and play a role in vertebral development. CpG sites meeting the false discovery correction (n=247) were subsequently subjected to gene network and ontology analysis using DAVID pathway software (http://david.abcc.ncifcrf.gov/) to determine if specific biological pathways were statistically enriched for differences in DNA methylation. Several of these sites were associated with pathways involved in cell growth, senescence and differentiation, as might be expected given the known effects of HU on hematopoiesis. However, the TGFβ pathway was also significantly represented in this subset of CpG sites (pathway analysis p<0.05). Discussion: Consistent with findings by Nyce (1989), we observed a trend in which HU usage was associated with hypermethylation, so that patients taking HU had on average more methylation genome-wide than patients not taking HU. Genetic variation in the TGFβ pathway has been implicated in the occurrence of several SCD complications, including pulmonary hypertension (Ashley-Koch et al., 2008), risk for stroke (Sebastiani et al., 2005), leg ulcers (Nolan et al., 2006), bacteremia (Adewoye et al., 2006), and priapism (Elliott et al., 2007). Therefore, identification of this pathway as affected by HU is especially interesting. In summary, we have evidence that DNA epigenetic differences occur in sickle cell patients as a result of HU usage and are associated a wide variety of gene pathways, consistent with the diverse array of clinical and laboratory changes observed in patients on HU. Future studies will include confirmation of the epigenetic differences in the specific genes implicated among a larger cohort of SCD patients on and off HU, as well as functional studies of these genes. Disclosures: No relevant conflicts of interest to declare.


Epigenetics ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. 567-578 ◽  
Author(s):  
Lirong Pei ◽  
Jeong-Hyeon Choi ◽  
Jimei Liu ◽  
Eun-Joon Lee ◽  
Brian McCarthy ◽  
...  

2021 ◽  
Author(s):  
Benjamin I Laufer ◽  
Kari E Neier ◽  
Anthony E Valenzuela ◽  
Dag H Yasui ◽  
Rebecca J Schmidt ◽  
...  

Background: Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDD), including autism spectrum disorders (ASD). Objective: We examined the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylome of fetal mouse brain and placenta to determine if there was a shared subset of differentially methylated regions (DMRs). Methods: A PCB mixture formulated to model the 12 most abundant congeners detected in the serum of pregnant women from a prospective high-risk ASD cohort was administered to female mice prior to and during pregnancy. Whole-genome bisulfite sequencing (WGBS) was performed to assess genome-wide DNA methylation profiles of placenta and brain on gestational day 18. Results: We found thousands of significant (empirical p < 0.05) DMRs distinguishing placentas and brains from PCB-exposed embryos from sex-matched vehicle controls. In both placenta and brain, PCB-associated DMRs were significantly (p < 0.005) enriched for functions related to neurodevelopment, cellular adhesion, and cellular signaling, and significantly (Odds Ratio > 2.4, q < 0.003) enriched for bivalent chromatin marks. The placenta and brain PCB DMRs overlapped significantly (Z-score = 4.5, p = 0.0001) by genomic coordinate and mapped to a shared subset of genes significantly (q < 0.05) enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in multiple NDD/ASD models. The placenta and brain DMRs also significantly (q < 0.05) overlapped by genomic coordinate with brain samples from humans with Rett syndrome and Dup15q syndrome. Discussion: These results demonstrate that placenta can be used as a surrogate for embryonic brain DNA methylation changes over genes relevant to NDD/ASD in a mouse model of prenatal PCB exposure.


2019 ◽  
Vol 34 (10) ◽  
pp. 1965-1973 ◽  
Author(s):  
Jacob K Kresovich ◽  
Quaker E Harmon ◽  
Zongli Xu ◽  
Hazel B Nichols ◽  
Dale P Sandler ◽  
...  

Abstract STUDY QUESTION Are reproductive characteristics associated with genome-wide DNA methylation and epigenetic age? SUMMARY ANSWER Our data suggest that increasing parity is associated with differences in blood DNA methylation and small increases in epigenetic age. WHAT IS KNOWN ALREADY A study of 397 young Filipino women (ages 20–22) observed increasing epigenetic age with an increasing number of pregnancies. STUDY DESIGN, SIZE, DURATION We used data from 2356 non-Hispanic white women (ages 35–74) enrolled in the Sister Study cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS Data on reproductive history were ascertained via questionnaire. Of the 2356 women, 1897 (81%) reported at least one live birth. Among parous women, 487 (26%) women reported ever experiencing a pregnancy complication. Three epigenetic clocks (i.e. Hannum, Horvath and Levine) and genome-wide methylation were measured in DNA from whole blood using Illumina’s HumanMethylation450 BeadChip. We estimated association β-values and 95% CIs using linear regression. MAIN RESULTS AND THE ROLE OF CHANCE All three epigenetic clocks showed weak associations between number of births and epigenetic age (per live birth; Hannum: β = 0.16, 95% CI = 0.02, 0.29, P = 0.03; Horvath: β = 0.12, 95% CI = −0.04, 0.27, P = 0.14; Levine: β = 0.27, 95% CI = 0.08, 0.45, P = 0.01); however, additional adjustment for current BMI attenuated the associations. Among parous women, a history of abnormal glucose tolerance during pregnancy was associated with increased epigenetic age by the Hannum clock (β = 0.96; 95% CI = 0.10, 1.81; P = 0.03) and Levine clocks (β = 1.69; 95% CI = 0.54, 2.84; P &lt; 0.01). In epigenome-wide analysis, increasing parity was associated with methylation differences at 17 CpG sites (Bonferroni corrected P≤ 1.0 × 10-7). LIMITATIONS, REASONS FOR CAUTION We relied on retrospective recall to ascertain reproductive history and pregnancy complications. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that parity is associated with small increases in epigenetic age and with DNA methylation at multiple sites in the genome. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the Intramural Research program of the NIH, National Institute of Environmental Health Sciences (Z01-ES049033, Z01-ES049032 and Z01-ES044055). None of the authors have a conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3552-3552
Author(s):  
Jiazhu Wu ◽  
Xiaojing Xu ◽  
Lirong Pei ◽  
Eun-Joon Lee ◽  
Austin Shull ◽  
...  

Abstract Background CD8+ T cells from chronic lymphocytic leukemia (CLL) patients have been demonstrated to exhibit a number of alterations in global gene expression profiles when compared with healthy controls. It has been shown that CD8+ T cells from CLL patients have increased expression of T-cell exhaustion markers like PD-1. CLL-induced functional defects in T cells are thought to directly contribute to the failure of antitumor immunity and are considered a hallmark of this disease. Nevertheless, the molecular regulation of T-cell dysfunction in CLL patients still remains poorly understood. Methods In the present study, CD8+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) of patients with CLL (n=10) and healthy donors (n=5), and analyzed by genome-wide DNA methylation profiling using Illumina Infinium 450K methylation array. The differentially methylated genes (KLRG1, CCR6 and TCRA) identified by the 450K array analysis were validated by bisulfite pyrosequencing in additional CLL and healthy control samples. DNA methylation in the first intron, distal upstream, and proximal promoter regions of PD-1 was also examined by pyrosequencing. Luciferase reporter assays were used to determine the effects of DNA methylation on the enhancer activity of a PD-1 upstream sequence. To investigate whether CLL cells can directly alter the methylation of the candidate genes in CD8+ T cells, healthy PBMCs were cultured alone or co-cultured with purified allogeneic CLL cells for 72 hours. In parallel, healthy PBMCs were cultured in CD3mAb-coated plates containing CD28mAb or treated with PMA/ionomycin for 72 hours. Cultured PBMCs were then harvested for flow cytometrc analysis and CD8+ T cells purification. Multicolor flow cytometry was used to characterize T-cell subsets and expression of PD-1, KLRG1 and TCRα/β. Bisulfite pyrosequencing was used to determine the methylation changes of KLRG1, CCR6, TCRA, and PD-1 in CD8+ T cells after co-culture with CLL cells or after T-cell activation. Results The Illumina 450K methylation array analysis identified 312 differentially methylated CpG sites (Student t-test, p<0.05, average methylation difference >0.25) between CD8+ T cells from CLL and healthy controls with 199 hypermethyated and 113 hypomethylated CpG sites that are associated with 206 genes. Interestingly, 4 out of the 7 most significant CpG sites (FDR<0.05) were located in the 3’-end of the TCRA gene. Bisulfite pyrosequencing confirmed the decrease in the methylation levels of CpG sites associated with KLRG1, CCR6 and TCRA in CD8+ T cells from CLL patients as compared to healthy donors. Previous studies have demonstrated the increased expression of exhaustion markers such as PD-1 on the cell surface of CD8+ T cells from CLL patients. We identified a differentially methylation region (DMR) in the distal upstream region of the PD-1 promoter in CD8+ T-cells. This particular DMR shows consistently lower methylation levels in CD8+ T cells from CLL patients as compared to healthy controls. We cloned the DMR sequence into a luciferase reporter vector pGL4.23 with a minimal promoter and demonstrated enhanced luciferase activities from the cloned sequence, suggesting the presence of potential enhancer activity from this region. We observed that co-cultures with allogeneic CLL cells lead to increased expression of TCRα/β and PD-1 in CD8+ T cells from healthy donors. The methylation level of one CpG site from the 3’-end of TCRA was reduced by 50% after co-culture with CLL cells, though no methylation change in the DMR of PD-1 was observed. T-cell activation by CD3/28mAb or PMA/Ionomycin also resulted decrease in the methylation level of the CpG site at the 3-end of TCRA, yet to a lesser extent. Conclusion For the first time, our investigation demonstrates the genome-wide DNA methylation profiles of CD8+ T cells isolated from CLL patients and determined that recurrent epigenetic changes in PD-1, KLRG1, CCR6, and TCRA in CD8+ T cells occur in CLL patients. Our methylation data suggest that the exhaustion phenotype observed in CLL patient CD8+ T cells maybe associated with altered DNA methylation profiles, an event previously seen in antigen-specific CD8+ T cells that undergo chronic viral infection-induced epigenetic changes. Disclosures Awan: Boehringer Ingelheim: Consultancy; Lymphoma Research Foundation: Research Funding. Wang:NIH/NIMHD: Research Funding. Shi:NIH/NCI: Research Funding; Georgia Research Alliance: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document