scholarly journals Enriched pharmacokinetic behavior and antitumor efficacy of thymoquinone by liposomal delivery

Nanomedicine ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. 641-656
Author(s):  
Hari Krishnareddy Rachamalla ◽  
Santanu Bhattacharya ◽  
Ajaz Ahmad ◽  
Kathyayani Sridharan ◽  
Vijay Sagar Madamsetty ◽  
...  

Background: Thymoquinone (TQ) has potential anti-inflammatory, immunomodulatory and anticancer effects but its clinical use is limited by its low solubility, poor bioavailability and rapid clearance. Aim: To enhance systemic bioavailability and tumor-specific toxicity of TQ. Materials & methods: Cationic liposomal formulation of TQ (D1T) was prepared via ethanol injection method and their physicochemical properties, anticancer effects in orthotopic xenograft pancreatic tumor model and pharmacokinetic behavior of D1T relative to TQ were evaluated. Results: D1T showed prominent inhibition of pancreatic tumor progression, significantly greater in vivo absorption, approximately 1.5-fold higher plasma concentration, higher bioavailability, reduced volume of distribution and improved clearance relative to TQ. Conclusion: Encapsulation of TQ in cationic liposomal formulation enhanced its bioavailability and anticancer efficacy against xenograft pancreatic tumor.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Christopher Nguyen ◽  
Ali Mehaidli ◽  
Kiruthika Baskaran ◽  
Sahibjot Grewal ◽  
Alaina Pupulin ◽  
...  

Many conventional chemotherapies have indicated side effects due to a lack of treatment specificity and are thus not suitable for long-term usage. Natural health products are well-tolerated and safe for consumption, and some have pharmaceutical uses particularly for their anticancer effects. We have previously reported the anticancer efficacy of dandelion (Taraxacum officinale) root and lemongrass (Cymbopogon citratus) extracts. However, their efficacy on prostate cancer and their interactions with standard chemotherapeutics have not been studied to determine if they will be suitable for adjuvant therapies. If successful, these extracts could potentially be used in conjunction with chemotherapeutics to minimize the risk of drug-related toxicity and enhance the efficacy of the treatment. We have demonstrated that both dandelion root extract (DRE) and lemongrass extract (LGE) exhibit selective anticancer activity. Importantly, DRE and LGE addition to the chemotherapeutics taxol and mitoxantrone was determined to enhance the induction of apoptosis when compared to individual chemotherapy treatment alone. Further, DRE and LGE were able to significantly reduce the tumour burden in prostate cancer xenograft models when administered orally, while also being well-tolerated. Thus, the implementation of these well-tolerated extracts in adjuvant therapies could be a selective and efficacious approach to prostate cancer treatment.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5775
Author(s):  
Hae Hyun Hwang ◽  
Hee Jeong Jeong ◽  
Sangwu Yun ◽  
Youngro Byun ◽  
Teruo Okano ◽  
...  

Pancreatic cancers are classified based on where they occur, and are grouped into those derived from exocrine and those derived from neuroendocrine tumors, thereby experiencing different anticancer effects under medication. Therefore, it is necessary to develop anticancer drugs that can inhibit both types. To this end, we developed a heparin–taurocholate conjugate, i.e., LHT, to suppress tumor growth via its antiangiogenic activity. Here, we conducted a study to determine the anticancer efficacy of LHT on pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET), in an orthotopic animal model. LHT reduced not only proliferation of cancer cells, but also attenuated the production of VEGF through ERK dephosphorylation. LHT effectively reduced the migration, invasion and tube formation of endothelial cells via dephosphorylation of VEGFR, ERK1/2, and FAK protein. Especially, these effects of LHT were much stronger on PNET (RINm cells) than PDAC (PANC1 and MIA PaCa-2 cells). Eventually, LHT reduced ~50% of the tumor weights and tumor volumes of all three cancer cells in the orthotopic model, via antiproliferation of cancer cells and antiangiogenesis of endothelial cells. Interestingly, LHT had a more dominant effect in the PNET-induced tumor model than in PDAC in vivo. Collectively, these findings demonstrated that LHT could be a potential antipancreatic cancer medication, regardless of pancreatic cancer types.


2019 ◽  
Vol 116 (14) ◽  
pp. 6618-6623 ◽  
Author(s):  
Guocan Yu ◽  
Benyue Zhu ◽  
Li Shao ◽  
Jiong Zhou ◽  
Manik Lal Saha ◽  
...  

Although platinum-based anticancer drugs prevail in cancer treatment, their clinical applications are limited by the severe side effects as well as their ineffectiveness against drug resistant cancers. A precise combination of photodynamic therapy (PDT) and chemotherapy can synergistically improve the therapeutic outcome and thereby may overcome drug resistance through a multipronged assault. Herein, we employ the well-defined cavity of a discrete organoplatinum(II) metallacage (M) to encapsulate octaethylporphine (OEP), a photosensitizer, forming a dual-functionalized system M⊃OEP that is wrapped into the hydrophobic core of the nanoparticles (MNPs) self-assembled from an amphiphilic diblock copolymer. Using a copper-free click reaction, a targeting ligand is conjugated on the surface of the MNPs, aiming to specifically deliver a chemotherapeutic drug and a photosensitizer to cancer cells. Benefiting from the enhanced permeability and retention effect and active targeting capability, high tumor accumulation of MNPs is achieved, leading to an improved therapeutic outcome and reduced side effects. In vivo studies demonstrate that the combination of chemotherapy and PDT exhibits a superior antitumor performance against a drug-resistant tumor model attributed to their synergistic anticancer efficacy.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2096 ◽  
Author(s):  
Avinash Kumar ◽  
Kshiti Dholakia ◽  
Gabriela Sikorska ◽  
Luis A. Martinez ◽  
Anait S. Levenson

The overexpression of metastasis-associated protein 1 (MTA1) in prostate cancer (PCa) contributes to tumor aggressiveness and metastasis. We have reported the inhibition of MTA1 by resveratrol and its potent analog pterostilbene in vitro and in vivo. We have demonstrated that pterostilbene treatment blocks the progression of prostatic intraepithelial neoplasia and adenocarcinoma in mouse models by inhibiting MTA1 expression and signaling. In the current study, we investigated the MTA1 targeted anticancer effects of Gnetin C, a resveratrol dimer, in comparison with resveratrol and pterostilbene. Using DU145 and PC3M PCa cells, we found that Gnetin C downregulates MTA1 more potently than resveratrol and pterostilbene. Further, Gnetin C demonstrated significant MTA1-mediated inhibitory effect on cell viability, colony formation, and migration, while showing a more potent induction of cell death than resveratrol or pterostilbene. In addition, we identified Gnetin C-induced substantial ETS2 (erythroblastosis E26 transformation-specific 2) downregulation, which is not only MTA1-dependent, but is also independent of MTA1 as a possible mechanism for the superior anticancer efficacy of Gnetin C in PCa. Together, these findings underscore the importance of novel potent resveratrol dimer, Gnetin C, as a clinically promising agent for the future development of chemopreventive and possibly combinatorial therapeutic approaches in PCa.


2009 ◽  
Vol 69 (14) ◽  
pp. 5843-5850 ◽  
Author(s):  
Sven H. Hausner ◽  
Craig K. Abbey ◽  
Richard J. Bold ◽  
M. Karen Gagnon ◽  
Jan Marik ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5661
Author(s):  
Sharavan Ramachandran ◽  
Itishree S. Kaushik ◽  
Sanjay K. Srivastava

Pancreatic tumors exhibit high basal autophagy compared to that of other cancers. Several studies including those from our laboratory reported that enhanced autophagy leads to apoptosis in cancer cells. In this study, we evaluated the autophagy and apoptosis inducing effects of Pimavanserin tartrate (PVT). Autophagic effects of PVT were determined by Acridine Orange assay and Transmission Electron Microscopy analysis. Clinical significance of ULK1 in normal and pancreatic cancer patients was evaluated by R2 and GEPIA cancer genomic databases. Modulation of proteins in autophagy signaling was assessed by Western blotting and Immunofluorescence. Apoptotic effects of PVT was evaluated by Annexin-V/APC assay. Subcutaneous xenograft pancreatic tumor model was used to evaluate the autophagy-mediated apoptotic effects of PVT in vivo. Autophagy was induced upon PVT treatment in pancreatic ducal adenocarcinoma (PDAC) cells. Pancreatic cancer patients exhibit reduced levels of autophagy initiator gene, ULK1, which correlated with reduced patient survival. Interestingly, PVT induced the expression of autophagy markers ULK1, FIP200, Atg101, Beclin-1, Atg5, LC3A/B, and cleavage of caspase-3, an indicator of apoptosis in several PDAC cells. ULK1 agonist LYN-1604 enhanced the autophagic and apoptotic effects of PVT. On the other hand, autophagy inhibitors chloroquine and bafilomycin blocked the autophagic and apoptotic effects of PVT in PDAC cells. Notably, chloroquine abrogated the growth suppressive effects of PVT by 25% in BxPC3 tumor xenografts in nude mice. Collectively, our results indicate that PVT mediated pancreatic tumor growth suppression was associated with induction of autophagy mediated apoptosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anhui Yang ◽  
Zhen Sun ◽  
Rui Liu ◽  
Xin Liu ◽  
Yue Zhang ◽  
...  

BackgroundLiver cancer is one of the most malignant human cancers, with few treatments and a poor prognosis. Erianin (ERN) is a natural compound with multiple pharmacological activities that has been reported to have numerous excellent effects against liver cancer in experimental systems. However, its application in vivo has been limited due to its poor aqueous solubility and numerous off-target effects. This study aimed to improve the therapeutic efficacy of ERN by developing novel ERN-loaded tumor-targeting nanoparticles.ResultsIn this study, ERN was loaded into liposomes by ethanol injection (LP-ERN), and the resulting LP-ERN nanoparticles were treated with transferrin to form Tf-LP-ERN to improve the solubility and enhance the tumor-targeting of ERN. LP-ERN and Tf-LP-ERN nanoparticles had smooth surfaces and a uniform particle size, with particle diameters of 62.60 nm and 88.63 nm, respectively. In HepG2 and SMMC-7721 cells, Tf-LP-ERN induced apoptosis, decreased mitochondrial membrane potentials and increased ERN uptake more effectively than free ERN and LP-ERN. In xenotransplanted mice, Tf-LP-ERN inhibited tumor growth, but had a minimal effect on body weight and organ morphology. In addition, Tf-LP-ERN nanoparticles targeted tumors more effectively than free ERN and LP-ERN nanoparticles, and in tumor tissues Tf-LP-ERN nanoparticles promoted the cleavage PARP-1, caspase-3 and caspase-9, increased the expression levels of Bax, Bad, PUMA, and reduced the expression level of Bcl-2. Moreover, in the spleen of heterotopic tumor model BALB/c mice, ERN, LP-ERN and Tf-LP-ERN nanoparticles increased the expression levels of Nrf2, HO-1, SOD-1 and SOD-2, but reduced the expression levels of P-IKKα+β and P-NF-κB, with Tf-LP-ERN nanoparticles being most effective in this regard. Tf-LP-ERN nanoparticles also regulated the expression levels of TNF-α, IL-10 and CCL11 in serum.ConclusionTf-LP-ERN nanoparticles exhibited excellent anti-liver cancer activity in vivo and in vitro by inducing cellular apoptosis, exhibiting immunoregulatory actions, and targeting tumor tissues, and did so more effectively than free ERN and LP-ERN nanoparticles. These results suggest that the clinical utility of a Tf-conjugated LP ERN-delivery system for the treatment of liver cancer warrants exploration.


2020 ◽  
Vol 117 (30) ◽  
pp. 17535-17542
Author(s):  
Stephanie D. Threatt ◽  
Timothy W. Synold ◽  
Jun Wu ◽  
Jacqueline K. Barton

Mismatch repair (MMR) deficiencies are a hallmark of various cancers causing accumulation of DNA mutations and mismatches, which often results in chemotherapy resistance. Metalloinsertor complexes, including [Rh(chrysi)(phen)(PPO)]Cl2(Rh-PPO), specifically target DNA mismatches and selectively induce cytotoxicity within MMR-deficient cells. Here, we present an in vivo analysis of Rh-PPO, our most potent metalloinsertor. Studies with HCT116 xenograft tumors revealed a 25% reduction in tumor volume and 12% increase in survival with metalloinsertor treatment (1 mg/kg; nine intraperitoneal doses over 20 d). When compared to oxaliplatin, Rh-PPO displays ninefold higher potency at tumor sites. Pharmacokinetic studies revealed rapid absorption of Rh-PPO in plasma with notable accumulation in the liver compared to tumors. Additionally, intratumoral metalloinsertor administration resulted in enhanced anticancer effects, pointing to a need for more selective delivery methods. Overall, these data show that Rh-PPO inhibits xenograft tumor growth, supporting the strategy of using Rh-PPO as a chemotherapeutic targeted to MMR-deficient cancers.


2013 ◽  
Vol 57 (10) ◽  
pp. 4816-4824 ◽  
Author(s):  
Adam B. Shapiro ◽  
Joseph Newman ◽  
Kosalaram Goteti ◽  
Marie-Eve Beaudoin ◽  
Rane Harrison ◽  
...  

ABSTRACTSeveral useful properties of liposome-based formulations of various existing antibacterial drugs have been reported. These properties include lower MICs, improved pharmacokinetics, lower toxicity, selective distribution to infected tissues, and enhancedin vivoefficacy. Here we reportin vivostudies of a liposomal formulation of a member of a novel class of antibacterial type II topoisomerase inhibitors, others of which have progressed to early phases of clinical trials. The free (i.e., nonliposomal) compound has broad-spectrum MICs but suboptimal pharmacokinetics in rats and mice, characterized by a high volume of distribution and rapid clearance. The liposomal formulation of the compound had essentially unchanged MICs but greatly reduced volume of distribution and clearance in rats and mice. In anin vivomouse model ofStaphylococcus aureusinfection of one thigh, the liposomal compound localized preferentially to the infected thigh, whereas the free compound showed no preference for the infected versus the uninfected thigh. Most importantly, the liposomal compound had enhanced efficacy at clearing the infection compared with the free compound. Delivery of this class of compounds as liposomal formulations may offer clinical advantages compared with free compounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arnon Møldrup Knudsen ◽  
Henning Bünsow Boldt ◽  
Elisabeth Victoria Jakobsen ◽  
Bjarne Winther Kristensen

AbstractGlioblastoma multiforme is the most common primary brain tumor and among the most lethal types of cancer. Several mono-target small molecule-inhibitors have been investigated as novel therapeutics, thus far with poor success. In this study we investigated the anticancer effects of SB747651A, a multi-target small-molecule inhibitor, in three well characterized patient-derived glioblastoma spheroid cultures and a murine orthotopic xenograft model. Concentrations of 5–10 µM SB747651A reduced cell proliferation, spheroid formation, migration and chemoresistance, while apoptotic cell death increased. Investigation of oncogenic kinase signaling showed decreased phosphorylation levels of mTOR, CREB, GSK3 and GYS1 leading to altered glycogen metabolism and formation of intracellular reactive oxygen species. Expression levels of cancer stemness marker SOX2 were reduced in treated tumor cells and SB747651A treatment significantly prolonged survival of mice with intracranial glioblastoma xenografts, while no adverse effects were observed in vivo at doses of 25 mg/kg administered 5 days/week for 8 weeks. These findings suggest that SB747651A has anticancer effects in glioblastoma. The cancer-related pathophysiological mechanisms targeted by SB747651A are shared among many types of cancer; however, an in-depth clarification of the mechanisms of action in cancer cells is important before further potential application of SB747651A as an anticancer agent can be considered.


Sign in / Sign up

Export Citation Format

Share Document