Stimuli-responsive graphene oxide and methotrexate-loaded magnetic nanoparticles for breast cancer-targeted therapy

Nanomedicine ◽  
2021 ◽  
Vol 16 (24) ◽  
pp. 2155-2174
Author(s):  
Mitra Dolatkhah ◽  
Nastaran Hashemzadeh ◽  
Jaleh Barar ◽  
Khosro Adibkia ◽  
Ayuob Aghanejad ◽  
...  

Aim: Nanocomposites of graphene oxide (GO) loaded with PEGylated superparamagnetic iron oxide nanoparticles and grafted with methotrexate and stimuli-responsive linkers (GO-SPION-MTX) were developed for photothermal and chemotherapy of breast cancer. Methods: PEGylated SPIONs were synthesized and conjugated with chemotherapeutic targeting agent MTX, which were then loaded on GO to prepare GO-SPION-MTX nanocomposites. To evaluate the photothermal effect of the nanocomposites, they were examined in breast cancer cell lines with low doses of near-infrared (NIR) laser radiation with/without acetazolamide. Results: The GO-SPION-MTX nanocomposites were found to be internalized by the folate-receptor-positive cancer cells and induce high cytotoxicity on exposure to NIR laser rays. Conclusion: Our findings suggest that the GO-SPION-MTX nanocomposite can potentially be used as a multimodal nanomedicine/theranostic against breast cancer.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1274
Author(s):  
Yu-Mi Ha ◽  
Young Nam Kim ◽  
Yong Chae Jung

In this study, we report the self-healing ability of polyurethane (PU) nanocomposites based on the photothermal effect of polydopamine-coated graphene oxide (PDA–rGO). Polydopamine (PDA) was coated on the graphene oxide (GO) surface, while simultaneously reducing GO by the oxidation of dopamine hydrochloride in an alkaline aqueous solution. The PDA–rGO was characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and scanning electron microscopy–energy-dispersive X-ray analysis. PDA–rGO/PU nanocomposites with nanofiller contents of 0.1, 0.5 and 1 wt% were prepared by ex situ mixing method. The photothermal effect of the PDA–rGO in the PU matrix was investigated at 0.1 W/cm2 using an 808 nm near-infrared (NIR) laser. The photothermal properties of the PDA–rGO/PU nanocomposites were superior to those of the GO/PU nanocomposites, owing to an increase in the local surface plasmon resonance effect by coating with PDA. Subsequently, the self-healing efficiency was confirmed by recovering the tensile stress of the damaged nanocomposites using the thermal energy generated by the NIR laser.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Nastaran Hashemzadeh ◽  
Mitra Dolatkhah ◽  
Ayuob Aghanejad ◽  
Mohammad Barzegar-Jalali ◽  
Yadollah Omidi ◽  
...  

Aims: The efficiency of mesoporous silica magnetic nanoparticles (MSMNP) as a targeted drug-delivery system was investigated. Methods: The superparamagnetic iron oxide nanoparticles (NP) were synthesized, coated with mesoporous silica and conjugated with polyethylene glycol and methotrexate. Next, 1-methyl D tryptophan was loaded into the prepared nanosystems (NS). They were characterized using transmission electron microscopy, scanning electron microscopy, dynamic light scattering, vibrating sample magnetometer, x-ray powder diffraction, Fourier transform-infrared spectroscopy and the Brunauer–Emmett–Teller method and their biological impacts on breast cancer cells were evaluated. Results: The prepared NSs displayed suitable properties and showed enhanced internalization by folate-receptor-expressing cells, exerting efficient cytotoxicity, which was further enhanced by the near-infrared radiation irradiation. Conclusions: On the basis of our findings, the engineered NS is a promising multifunctional nanomedicine/theranostic for solid tumors.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Ha Hee Shin ◽  
Hyung Woo Choi ◽  
Jae Hyun Lim ◽  
Ji Woon Kim ◽  
Bong Geun Chung

AbstractThe combination therapy based on multifunctional nanocomposites has been considered as a promising approach to improve cancer therapeutic efficacy. Herein, we report targeted multi-functional poly(N-isopropylacrylamide) (PNIPAM)-based nanocomposites for synergistic chemo-photothermal therapy toward breast cancer cells. To increase the transition temperature, acrylic acid (AAc) was added in synthetic process of PNIPAM, showing that the intrinsic lower critical solution temperature was changed to 42 °C . To generate the photothermal effect under near-infrared (NIR) laser irradiation (808 nm), polypyrrole (ppy) nanoparticles were uniformly decorated in PNIPAM-AAc. Folic acid (FA), as a cancer targeting ligand, was successfully conjugated on the surplus carboxyl groups in PNIPAM network. The drug release of PNIPAM-ppy-FA nanocomposites was efficiently triggered in response to the temperature change by NIR laser irradiation. We also confirmed that PNIPAM-ppy-FA was internalized to MDA-MB-231 breast cancer cells by folate-receptor-mediated endocytosis and significantly enhanced cancer therapeutic efficacy with combination treatment of chemo-photothermal effects. Therefore, our work encourages further exploration of multi-functional nanocarrier agents for synergistic therapeutic approaches to different types of cancer cells.


2019 ◽  
Author(s):  
Yuqing Chen ◽  
Wei Wu ◽  
Zeqiao Xu ◽  
Cheng Jiang ◽  
Shuang Han ◽  
...  

Abstract Background: Treatment of multidrug-resistant (MDR) bacterial infection is a great challenge in public health. Herein, we provide a solution to this problem with the use of graphene oxide-silver (GO-Ag) nanocomposites as anti-bacterial agent. Methods: Following established protocols, silver nanoparticles were grown on graphene oxide sheets. Then, a series of in-vitro studies were conducted to validate the antibacterial efficiency of the GO-Ag nanocomposites against clinical MDR Escherichia coli (E. coli) strains. Firstly, minimum inhibitory concentrations (MICs) of different antimicrobials were tested against MDR E. Coli strains. Then, bacteria viability assessments were conducted with different nanomaterials in Luria-Bertani (LB) broth. Afterwards, photothermal irradiation was conducted on MDR E. coli with lower GO-Ag concentration. At last, fluorescent imaging and morphology characterization using scanning electron microscope (SEM) were done to find the possible cause of antibacterial effect. Results: GO-Ag nanocomposites showed the highest antibacterial efficiency among tested antimicrobials. Synergetic antibacterial effect was observed in GO-Ag nanocomposites treated group. The remained bacteria viabilities were 4.4% and 4.1% respectively for different bacteria strains with GO-Ag concentration at 14.0 µg mL-1. In addition, GO-Ag nanocomposites have strong absorption in the near-infrared field and can convert the electromagnetic energy to heat. With the use of this photothermal effect, effective sterilization could be achieved using GO-Ag nanocomposites concentration as low as 7.0 µg mL-1. Fluorescent imaging and morphology characterization were used to analyze bacteria living status, which uncovered that bacteria integrity was disrupted after GO-Ag nanocomposites treatment. Conclusions: GO-Ag nanocomposites are proved to be efficient antibacterial agent against multi-drug resistant E. coli. Their strong antibacterial effect arises from inherent antibacterial property and photothermal effect that provides aid for bacteria killing.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Zahidah Ayob ◽  
Siti Pauliena Mohd Bohari ◽  
Azman Abd Samad ◽  
Shajarahtunnur Jamil

Justicia gendarussamethanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1286 ◽  
Author(s):  
Lee ◽  
Jung ◽  
Jo ◽  
Yang ◽  
Koh ◽  
...  

Abstract: Photothermal therapy (PTT) using a near-infrared (NIR) heptamethine cyanine fluorophore has emerged as an alternative strategy for targeted cancer therapy. NIR fluorophores showing a high molar extinction coefficient and low fluorescence quantum yield have considerable potential applications in photothermal cancer therapy. In this study, a bifunctional sorbitol–ZW800 conjugate was used as an advanced concept of photothermal therapeutic agents for in vivo cancer imaging and therapy owing to the high tumor targetability of the sorbitol moiety and excellent photothermal property of NIR heptamethine cyanine fluorophore. The sorbitol–ZW800 showed an excellent photothermal effect increased by 58.7 °C after NIR laser irradiation (1.1 W/cm2) for 5 min. The HT-29 tumors targeted by sorbitol–ZW800 showed a significant decrease in tumor volumes for 7 days after photothermal treatment. Therefore, combining the bifunctional sorbitol–ZW800 conjugate and NIR laser irradiation is an alternative way for targeted cancer therapy, and this approach holds great promise as a safe and highly efficient NIR photothermal agent for future clinical applications.


2020 ◽  
Author(s):  
Xiang Ling ◽  
Zhaokui Jin ◽  
Qi Jiang ◽  
Xiaotao Wang ◽  
Bin Wei ◽  
...  

Abstract Photothermal nanotheranostics, especially in the near infrared II (NIR-II) region, exhibits a great potential in precision and personalized medicine, owing to high tissue penetration of NIR-II light. NIR-II-photothermal nanoplatforms with high biocompatibility as well as high photothermal effect are urgently needed but rarely reported so far. Te nanomaterials possess high absorbance to NIR-II light but also exhibit high cytotoxicity, impeding their biomedical applications. In this work, the controllable incorporation of biocompatible Se into the lattice of Te nanostructures is proposed to intrinsically tune their inherent cytotoxicity and enhance their biocompatibility, developing TeSex nano-alloys as a new kind of theranostic nanoplatform. We have uncovered that the cytotoxicity of Te nanomaterials primarily derives from irreversible oxidation stress and intracellular imbalance of organization and energy, and can be eliminated by incorporating a moderate proportion of Se (x = 0.43). We have also discovered that the as-prepared TeSex nano-alloys have extraordinarily high NIR-II-photothermal conversion efficiency (77.2%), 64Cu coordination and computed tomography contrast capabilities, enabling high-efficacy multimodal photothermal/photoacoustic/positron emission tomography/computed tomography imaging-guided NIR-II-photothermal therapy of cancer. The proposed nano-alloying strategy provides a new route to improve the biocompatibility of biomedical nanoplatforms and endow them with versatile theranostic functions.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 476 ◽  
Author(s):  
Gayoung Jo ◽  
Bo Young Lee ◽  
Eun Jeong Kim ◽  
Min Ho Park ◽  
Hoon Hyun

A feasible and biocompatible supramolecular complex self-assembled from indocyanine green (ICG) and methyl-β-cyclodextrin (Mβ-CD) was developed for targeted cancer imaging, which enhanced fluorescence-guided photothermal cancer therapy. This study confirmed that the formation of an inclusion complex of the heterocyclic ICG moiety and Mβ-CD inner cavity could result in improved tumor targetability compared with free ICG. The ICG-CD complex could be used as a bifunctional phototherapeutic agent for targeted cancer phototherapy due to the high tumor targetability of the Mβ-CD moiety and effective photothermal performance of the near-infrared (NIR) ICG moiety. Upon NIR laser irradiation, the photothermal effect exerted by the ICG-CD complex significantly enhanced the temperature at the tumor site by 56.2 °C within 5 min. Targeting HT-29 tumors using the ICG-CD complex resulted in an apparent reduction in tumor volumes over the 9 days after photothermal treatment. Moreover, no tumor recurrence or body weight loss were observed after administering a single dose of ICG-CD complex with NIR laser irradiation. Therefore, the administration of the biocompatible ICG-CD complex in combination with NIR laser treatment can be safely explored as a potential strategy for future clinical applications.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Lu Cheng ◽  
Nuo Yu ◽  
Yan Zhang ◽  
Zhun Shi ◽  
Haifeng Wang ◽  
...  

The development of photocatalysts with wide UV-Vis-near-infrared (NIR) photoabsorption has received tremendous interest for utilizing sunlight efficiently. In this work, Cu2(OH)PO4 superstructures are prepared by a simple hydrothermal route, and they have strong bandgap absorption in UV-Visible region and a distinctive plasmon resonance absorption in NIR region. Under the synergetic illumination of visible light and 980[Formula: see text]nm laser (3.0[Formula: see text]W[Formula: see text]cm[Formula: see text]), Cu2(OH)PO4 superstructures can degrade 89.2% MB with the elevated temperature ([Formula: see text]51∘C) of solution, which is higher than that from visible light group (50.0%), laser group (16.4%), and visible-light/exterior-heating group (62.5%, same temperature at [Formula: see text]51.0∘C). These facts reveal that Cu2(OH)PO4 superstructures exhibit NIR-laser enhanced photocatalytic activity, which not only comes from the photothermal effect-induced temperature elevation, but also mainly results from the increased production of photogenerated electron-hole pairs by NIR-laser. Therefore, Cu2(OH)PO4 superstructures can act as efficient photocatalyst with NIR-laser enhanced photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document