scholarly journals Influences of climate change on the geographical distribution of three potential reservoirs of Chagas and Leishmaniasis from the Yucatan Peninsula

2021 ◽  
Vol 11 (1) ◽  
pp. 1-14
Author(s):  
David A Moo Llanes ◽  
Carlos M. Baak-Baak ◽  
Nohemi Cigarroa-Toledo ◽  
Julio Cesar Tzuc-Dzul ◽  
J Alonso Panti-May ◽  
...  

AbstractPeromyscus yucatanicus, Heteromys gaumeri and Otonyctomys hatti are small endemic rodents of the Yucatan Peninsula. To understand the ecological and geographic distribution of these rodent species in the region, we used ecological niche modeling (ENM) and reconstructed the historical (Pleistocene), current, and potential impact of climate change (2050), on the spatial suitability areas. According to our models, the three species reduced their coverage from the Pleistocene to the current, but under future scenarios a slight increase of the suitable areas for all of them is predicted. However, the ecological niche of O. hatti is narrow, specialized and different from that of P. yucatanicus or H. gaumeri, which together occupy a relatively similar niche and have substantial overlap in the geographic distribution of suitable habitat. Many regions of the current and potential distribution of O. hatti are not under protection even though it is a threatened species. Our results could be used as an important element to re-evaluate the conservation areas of O. hatti throughout its potential range. Key words: Cricetidae, Ecological Niche, Heteromyidae, MaxEnt, Mexico.

Author(s):  
Carrie Wells ◽  
David Tonkyn

Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including butterfly species. Research has focused primarily on high latitude species in North America, with no known studies examining responses of taxa in the southeastern US. The Diana fritillary (Speyeria diana) has experienced a recent range retraction in that region, disappearing from lowland sites and now persisting in two, phylogenetically disjunct mountainous regions. These findings are consistent with the predicted effects of a warming climate on numerous taxa, including other butterfly species in North America and Europe. We used ecological niche modeling to predict future changes to the distribution of S. diana under several climate models. To evaluate how climate change might influence the geographic distribution of this butterfly, we developed ecological niche models using Maxent. We used two global circulation models, CCSM and MIROC, under low and high emissions scenarios to predict the future distribution of S. diana. Models were evaluated using the Receiver Operating Characteristics Area Under Curve test and the True Skill Statistics (mean AUC = 0.91± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for RCP = 4.5, and mean AUC = 0.87± 0.0031SE, TSS = 0.84 ± 0.0032 SE for RCP = 8.5), which both indicate that the models we produced were significantly better than random (0.5). The four modeled climate scenarios resulted in an average loss of 91% of suitable habitat for S. diana by 2050. Populations in the Southern Appalachian Mountains were predicted to suffer the most severe fragmentation and reduction in suitable habitat, threatening an important source of genetic diversity for the species. The geographic and genetic isolation of populations in the west suggest that those populations are equally as vulnerable to decline in the future, warranting ongoing conservation of those populations as well. Our results suggest that the Diana fritillary is under threat of decline by 2050 across its entire distribution from climate change, and is likely to be negatively affected by other human-induced factors as well.


Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 94 ◽  
Author(s):  
Carrie Wells ◽  
David Tonkyn

Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including butterfly species. Research has focused primarily on high latitude species in North America, with no known studies examining responses of taxa in the southeastern United States. The Diana fritillary (Speyeria diana) has experienced a recent range retraction in that region, disappearing from lowland sites and now persisting in two phylogenetically distinct high elevation populations. These findings are consistent with the predicted effects of a warming climate on numerous taxa, including other butterfly species in North America and Europe. We used ecological niche modeling to predict future changes to the distribution of S. diana under several climate models. To evaluate how climate change might influence the geographic distribution of this butterfly, we developed ecological niche models using Maxent. We used two global circulation models, the community climate system model (CCSM) and the model for interdisciplinary research on climate (MIROC), under low and high emissions scenarios to predict the future distribution of S. diana. Models were evaluated using the receiver operating characteristics area under curve (AUC) test and the true skill statistics (TSS) (mean AUC = 0.91 ± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for representative concentration pathway (RCP) = 4.5; and mean AUC = 0.87 ± 0.0031 SE, TSS = 0.84 ± 0.0032 SE for RCP = 8.5), which both indicate that the models we produced were significantly better than random (0.5). The four modeled climate scenarios resulted in an average loss of 91% of suitable habitat for S. diana by 2050. Populations in the southern Appalachian Mountains were predicted to suffer the most severe fragmentation and reduction in suitable habitat, threatening an important source of genetic diversity for the species. The geographic and genetic isolation of populations in the west suggest that those populations are equally as vulnerable to decline in the future, warranting ongoing conservation of those populations as well. Our results suggest that the Diana fritillary is under threat of decline by 2050 across its entire distribution from climate change, and is likely to be negatively affected by other human-induced factors as well.


2019 ◽  
Vol 65 (3) ◽  
pp. 470-486 ◽  
Author(s):  
Edgar Rodríguez-Huerta ◽  
Martí Rosas-Casals ◽  
Laura Margarita Hernández-Terrones

Author(s):  
Luis Enrique Ángeles-González ◽  
Enrique Martínez-Meyer ◽  
Carlos Yañez-Arenas ◽  
Iván Velázquez-Abunader ◽  
Jorge A. López-Rocha ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriel Parra-Henao ◽  
Laura C. Suárez-Escudero ◽  
Sebastián González-Caro

Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasiteTrypanosoma cruzi,which causes Chagas disease.This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species (Panstrongylus geniculatus,Rhodnius pallescens,R. prolixus, andTriatoma maculata) were analyzed.The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution wereP. geniculatus,R. pallescens, andR. prolixus. In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


2014 ◽  
Vol 13 (1) ◽  
pp. 34 ◽  
Author(s):  
Benjamin P Monroe ◽  
Yoshinori J Nakazawa ◽  
Mary G Reynolds ◽  
Darin S Carroll

Sign in / Sign up

Export Citation Format

Share Document