scholarly journals Chetoui Olive Cultivar Rhizosphere: Potential Reservoir for Exoenzymes and Exopolysaccharides Producing Bacteria

2020 ◽  
Vol 14 (4) ◽  
pp. 2569-2575
Author(s):  
Ben Amar Cheba ◽  
H.M.A. Abdelzaher

Rhizospheric soils from cultivated olive (Olea europaea) trees of Chemlali, Chetoui, Quaissi, and Djalat cultivars were assessed for their bacterial abundance and diversity and were further screened for production of exopolysaccharides and exoenzymes (cellulase, chitinase, amylase, protease, lipase, and peroxidase). The results of the present study indicate that Chetoui cultivar revealed higher diversity, followed by Chemlali > Quaissi > Djalat, wherein, bacilli, enteric bacteria, and pseudomonads were abundantly present as specific bacterial groups associated with the Chetoui rhizosphere. Moreover, the exopolysaccharide (EPS)-producing bacteria of Chetoui cultivar (68.4%) presented the highest efficiency, followed by Djalat (23.5%) > Chemlali (7 %) > Quaissi (1%). These results revealed that the Chetoui cultivar presented highest enzyme activities, followed by Chemlali > Djalat > Quaissi, with a distinct abundance of peroxidase- and chitinase-producing bacteria, which may play a pivotal role in adapting olives to the environmental stresses. From this preliminary study, we confirmed that olive rhizosphere microbial diversity is essentially driven by the geographical origin and genotype of olive cultivars. Furthermore, we recommended the Chetoui olive cultivar rhizosphere as a potential reservoir for exoenzyme- and EPS-producing bacteria useful for future biotechnological applications.

2019 ◽  
Vol 129 ◽  
pp. 29-38 ◽  
Author(s):  
Yuanyuan Yang ◽  
Raphael A. Viscarra Rossel ◽  
Shuo Li ◽  
Andrew Bissett ◽  
Juhwan Lee ◽  
...  

LE002 and MT087 cultivar candidates had olive fruits their color is never turn black from green until they fall down. So that their olives described as evergreen fruit. In this study olives were harvested at of first day of November normally other olive cultivars have whole black olive but LE002 and MT087 have green olives. Oil and dry matter content of LE002 and MT087 fruits were determined after that oils were produced by cold press and free fatty acid content, peroxide value and absorbency in ultraviolet light of oils were detected. Dry matter and oil content of olives were 41,0% and 19,47% for MT087 and 45,96% and 23,42% for LE002. Oil content of green olives were lower than these detected values for Marmara region of Turkey. All the analyses result of oils was between the limits of olive oil standards and regulations. So that both these cultivar candidates should be more analyzed to be determine their oil characteristics for future cultivar registration and certification steps.


2020 ◽  
Vol 19 (3) ◽  
pp. 135-147
Author(s):  
Majid Golmohammadi ◽  
Omid Sofalian ◽  
Mehdi Taheri ◽  
Alireza Ghanbari ◽  
Valiollah Rasoli

The evergreen tree olive (Olea europaea L.) is the only species of the genus Olea that produces edible fruits with high ecological and economic value. This tree species has developed a series of physiochemical mechanisms to tolerate drought stress and grow under adverse climatic environments. One of these mechanisms is photosynthesis activities, so that as yet little information achieved about the relations between olive production and photosynthetic parameters under drought conditions. An experiment was carried out during two consecutive years (2015–2017) to study the response of 20 different olive tree cultivars (Olea europaea L.) to drought stress. Several parameters like net photosynthetic rate (PN), stomatal conductance (GS), transpiration rate (TE), photosynthetic pigments (total chlorophyll, chlorophyll a, b and carotenoid) and fruit yield were measured. The results of combined analysis of variance for fruit yield and other measured traits showed that year, drought treatment, cultivar main effects and their interactions were highly significant. The results indicated that drought stress reduced all traits, however GS (42.80%), PN (37.21%) and TE (37.17%) significantly affected by drought. Lower reduction in photosynthetic performance (PN, GS and TE) in the cultivar T7 compared to other olive cultivars allowed them to maintain better fruit yield. Principal component analysis (PCA) identified two PCs that accounted for 82.04 and 83.27% of the total variation in photosynthetic parameters under optimal and drought stress conditions, respectively. Taken together, mean comparison, relative changes due to drought and biplot analysis revealed that cultivars ‘T7’, ‘Roghani’, ‘Koroneiki’, ‘Korfolia’ and ‘Abou-satl’ displayed better response against drought stress. According to our results, one olive cultivar namely ‘T7’, could be used in olive breeding programs to improve new high yielding cultivars with drought tolerance for use in the drought-prone environments.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1252-1252 ◽  
Author(s):  
J. Moral ◽  
R. De la Rosa ◽  
L. León ◽  
D. Barranco ◽  
T. J. Michailides ◽  
...  

Traditional olive orchards in Spain have been planted at a density of 70 to 80 trees per ha with three trunks per tree. During the last decade, the hedgerow orchard, in which planting density is approximately 2,000 trees per ha, was developed. In 2006 and 2007, we noted a severe outbreak of fruit rot in FS-17, a new cultivar from Italy, in an experimental hedgerow planting in Córdoba, southern Spain. The incidence of fruit rot in ‘FS-17’ was 80% in January of 2006 and 24% in January of 2007. Cvs. Arbosana, IRTA-i18 (a selected clone from ‘Arbequina’), and Koroneiki had no symptoms in either year of the study. Disease incidence in ‘Arbequina’ was <0.1% only in 2006. Affected fruits were soft with gray-white skin and they eventually mummified. Black-green sporodochia were observed on the surface of diseased fruits. A fungus was isolated from diseased fruits on potato dextrose agar (PDA) and incubated at 22 to 26°C with a 12-h photoperiod. After 8 days of growing on PDA, fungal colonies formed conidial chains having a main axis with up to 10 conidia and secondary and tertiary short branches with two to four conidia. Conidia were obpyriform, ovoid, or ellipsoidal, without a beak or with a short beak, had up to four transverse septa, and measured 11.7 to 24.7 (mean 19.6) μm long and 7.7 to 13.0 (mean 9.6) μm wide at the broadest part of the conidium. The length of the beak of conidia was variable, ranging from 0 to 28.6 (mean 5.5) μm. The fungus was identified as Alternaria alternata (1). Pathogenicity tests were performed by spraying 40 mature fruits of ‘FS-17’ with a spore suspension (1 × 106 spores per ml). The same number of control fruits was treated with water. After 21 days, inoculated fruit developed symptoms that had earlier been observed in the field. A. alternata was reisolated from lesions on all infected fruits. The fungus was not isolated from any of the control fruits. The experiment was performed twice. The new growing system and the high susceptibility of some olive cultivars, such as FS-17, may result in a high incidence of disease caused by a pathogen that is generally characterized as weakly virulent. To our knowledge, this is the first report of A. alternata causing a severe outbreak of fruit rot on olive trees in the field. References: (1) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.


Author(s):  
Mahrus Ali ◽  
Ardiansyah Kurniawan ◽  
Nuning Mahmudah Noor

Kecalokis recognized as a typical shrimp sauce traditionally produced by the Malay inhabitants in Bangka Island and Palembang, Southern region of Sumatra. Comparing to terasi, the most common Indonesian fermented shrimp, the information on kecalokhas rarely been reported. This study aimed to obtain the characteristics of both the geographical origin of kecalokproduct from Bangka and Palembang. A descriptive analysis was used to observe the profiles of both kecalokproducts including sensory, microbiology, proximate, and physical analysis. Results showed that kecalokfrom both locations had similar characteristics, i.e. a distinctive taste and aroma, high nutrition value, and containing some useful bacteria (LAB) which have beneficial role in human body. Therefore, kecalokwill be a prospective functional based-indigenous food in Indonesia.


2017 ◽  
Vol 74 (3) ◽  
pp. 691-700 ◽  
Author(s):  
Erika S. Blay ◽  
Stacy G. Schwabedissen ◽  
Timothy S. Magnuson ◽  
Ken A. Aho ◽  
Peter P. Sheridan ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 347 ◽  
Author(s):  
Yuting Li ◽  
Hao Sun ◽  
Weichao Yang ◽  
Guanxiong Chen ◽  
Hui Xu

Viruses are ubiquitous in natural systems. By influencing bacterial abundance (BA) and community structure through lysis-lysogenic conversion, viruses are involved in various ecological processes. In agricultural management, nitrogen addition and irrigation should be considered as important factors that can modify soil viral dynamics but have been ignored. In our study, short-term dynamics of autochthonous soil viral and bacterial abundance and diversity after irrigation and urea application were examined in a long-term experimental paddy field. Urea addition delayed the emergence of peak viral abundance for three days, suggesting that viruses are sensitive to N addition. Under short-term eutrophic conditions through urea application, viruses undertake a lysogenic-biased strategy. Moreover, nitrogen-fixing bacteria were most likely specifically lysed in urea-treated soil, which suggests that soil viruses block N accumulation by killing nitrogen-fixing bacteria. To the best of our knowledge, this study is the first to investigate dynamic changes in autochthonous viruses in paddy fields.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e37849 ◽  
Author(s):  
Krissi M. Hewitt ◽  
Charles P. Gerba ◽  
Sheri L. Maxwell ◽  
Scott T. Kelley

2011 ◽  
Vol 77 (15) ◽  
pp. 5438-5444 ◽  
Author(s):  
Moogega Cooper ◽  
Myron T. La Duc ◽  
Alexander Probst ◽  
Parag Vaishampayan ◽  
Christina Stam ◽  
...  

ABSTRACTA bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.


Author(s):  
Souihli Slim, Nuno Rodrigues ◽  
Ana C.A. Veloso ◽  
Luis G. Dias ◽  
Rebeca Cruz, Susana Casal ◽  
Souheib Oueslati ◽  
...  

Tunisian commercial monovarietal olive oils, produced from two predominant autochthonous olive cultivars (cvs Chétoui and Oueslati) and another less investigated olive cultivar (cv Sahli) were studied. Chemical and sensory data have shown that most olive oils should be classified as lampante olive oil, pointing out the need of improving producing and/or storage conditions. Sahli olive oils showed the lowest total phenols content (157±48 mg/kg), oxidative stability (6.5±2.1 h), DPPH scavenging activity (68%±14) and monounsaturated fatty acids content (63.1%±3.1). These olive oils had the highest saturated and polyunsaturated fatty acids contents (19.9%±2.4 and 16.9%±1.4) as well as total tocopherols levels (222±49 mg/kg). Finally, the information of 12 selected parameters (total phenols, oxidative stability, nine fatty acids and γ-tocopherol), allowed establishing a linear discriminant model that correctly classified olive oils according to the olive cultivar with predictive rates of 90%±8. Heptadecenoic, behenic and eicosenoic acids were the three fatty acids identified as the most relevant chemical markers of Sahli olive oils.


Sign in / Sign up

Export Citation Format

Share Document