scholarly journals Behaviour of Shear Connector in CFST for Axial Strength

Concrete Filled Steel structures (CFST) offers wide benefits like high strength, ductility, and energy absorption with the combined benefits of steels and concrete. It also reduces the complexity of the production, as it does not require the shuttering of work, and so it is not commonly used. In addition to CFST elements, are more efficient, and allow for rapid construction and cost savings due to the elimination of the shape and material of component part. Concrete-filled-steel-tube is currently gaining more and more popularity in the construction industry. Concrete-filled-steel-tube it is a component of a good performance, as a result of the impact of the steel and holds it with concrete, and the question of structural diversity. In this paper, it presents a study of the evolution of the load carrying capacity, used for the connection of a variety of sizes and shapes, with a different position. The composite action of steel and concrete there is a need for a strong bond between the steel and concrete interface. Analysis of CFST column using the Finite element method and the numerical study is done on the selected case under axial loading condition.

2017 ◽  
Vol 21 (10) ◽  
pp. 1542-1552 ◽  
Author(s):  
Shiming Chen ◽  
Junming Jiang ◽  
Liangjiu Jia

An innovative beam-to-column composite joint with adapter-bracket was proposed and its behavior was investigated through finite element analysis. The special adapter-bracket is to facilitate the assembly of the steel box beam and the concrete-filled steel tube column through high-strength blind bolts. In the adapter-bracket, two endplates are welded to the beam and bolted to the column, respectively. First, two finite element models of the bolted extended endplate joint were developed in ABAQUS and validated by available experimental results. Then, based on modified models, parametric analyses were conducted to evaluate the novel joint performance, in terms of the initial stiffness, rotation capacity, moment capacity, failure mode, and joint classification. The variables included flange thickness, endplate thickness, and bolt size. Results demonstrated that the joint behavior was significantly affected by the flange thickness, the endplate-A thickness, and bolt size while slightly influenced by the endplate-B thickness. Additionally, these joints had favorable rotation and moment capacity.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1349-1353
Author(s):  
Zhen Kai Duan ◽  
Rui Wang

Concrete-Filled Steel Tube with high capacity, good ductility and toughness, convenient construction, good fire resistance and other advantages. Currently[1] . Concrete-Filled Steel Tube structure has been widely used in the basic components and the overall structure of behavioral research has made many achievements. There are many advantages of concrete pipe above, but it also has fatal flaws, Stainless steel steel that is the difference[2]. The stainless steel has a beautiful appearance, durability, corrosion resistance, low maintenance costs, good fire resistance and other advantages. New stainless steel pipe concrete structure has both ordinary steel concrete good mechanical properties and excellent durability of stainless steel, can be widely used in buildings and bridges of the marine environment as well as some of the high durability and aesthetic requirements important building structures. Based on the outer stainless steel hollow sandwich - the carbon steel pipe shaft of light pressure test concrete results of load and displacement of the structure, variation of load and strain, and the impact of the empty heart of these parameters.


2013 ◽  
Vol 275-277 ◽  
pp. 2077-2083
Author(s):  
Kai Cheng Huo ◽  
Xian Cheng Shu ◽  
Huan Huan Yue

Measure the temperature change of concrete-filled steel tubular with high strength low heat micro-expansive in its hardening process with different mix proportion. Study self-stress of high strength low-heat micro-expansive and study the relations of the expansive admixtures quantity and its changing regularity with the time. Observe the fail of axial compression short column of concrete-filled steel tubular with high strength expansive under vertical loading, study the changing regularity of its stress under loading.


2019 ◽  
Vol 22 (11) ◽  
pp. 2490-2503 ◽  
Author(s):  
YT Zhang ◽  
B Shan ◽  
Y Xiao

Existing research on the widely used concrete-filled steel tubes is mainly focused on static or cyclic loading, and the studies on effects of high strain rate are relatively rare. In this article, seven stub concrete-filled steel tubular columns with square section were tested under both static and impact loads, using a large-capacity drop-weight testing machine. The research parameters were variable height of the drop-weight and different load types. The experimental results show that the failure modes of the concrete-filled steel tube columns from the impact tests are similar with those under static load, characterized by the local buckling of the steel tube. The time history curves of impact force and steel strain were investigated. The results indicate that with increasing impact energy, the concrete-filled steel tube stub columns had a stronger impact-resistant behavior. The dynamic analysis software LS-DYNA was employed to simulate the impact behaviors of the concrete-filled steel tube specimens, and the finite element results were reasonable compared with the test results. The parameter analysis on the impact behavior of concrete-filled steel tube columns was performed using the finite element model as well. A simple method was proposed to calculate the impact strength of square concrete-filled steel tube columns and compared favorably with experimental results.


Sign in / Sign up

Export Citation Format

Share Document