scholarly journals Compare the Symmetric Hybridized Cascaded MLI with 17 levels with the Asymmetric Switched Capacitor MLI Topologies for Dynamic Loading

Author(s):  
Jayesh B. Patil

This article builds a symmetric hybridized cascaded a switching capacitor unit in a multilayer inverter and compares it to For 17 level inverters, A switched capacitor unit is utilized with an asymmetric multilevel inverter. In the symmetric hybridized multilevel inverter design, a In the midst of a dual-input dc source, there is a bi-directional switch is utilized to create a modified H-bridge inverter with a five-level output voltage instead of three. In the proposed scenario, In an asymmetric multilevel inverter, the switched capacitor unit substitutes the dc sources. which enlarges By a factor of two, The output voltage has been increased. and the voltage levels at the loads are increased by a factor of two. MATLAB-SIMULINK was used to verify the suggested topology using the staircase modulation approach. The findings show that multilayer inverter topologies with low total harmonic distortion, fewer switches, With greater levels of output voltage are better stable during load disturbance circumstances, making them ideal for renewable energy applications.

2018 ◽  
Vol 7 (2.24) ◽  
pp. 55
Author(s):  
Anuja Prashant Diwan ◽  
N Booma Nagarajan ◽  
T Murugan ◽  
S Ashrafudeen ◽  
G J. Jenito Paul

In this paper, single phase nine level cascaded multilevel inverter using trinary voltage source is described. Normally for getting nine level MLI output, four H-Bridges are required. But in proposed method, nine level output is achieved by using two H-Bridges only. Performance of Multilevel inverter is improved by using modular switching pattern. This method reduces the number of switches to the half and thus reduces switching losses. Since the number of levels at the output voltage is increased, Total Harmonic Distortion (THD) gets reduced significantly. This presents simple configuration is simple and can be controlled easily. MATLAB-SIMULINK is used to validate the results of proposed technic, simulation is carried out using. The proposed method has been exhaustively compared with classical cascaded H-Bridge topology. 


2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


Author(s):  
Sujatha M ◽  
A.K. Parvathy

<p>New improved multilevel inverter (MLI) topology for Renewable energy systems is proposed in this paper. Cascaded multilevel inverters (CMLI) produce an output voltage level depending on the number of individual sources connected. The main drawback of CMLI is, as the output voltage level increases in number, the switches used in the device also increases and hence the complexity of the circuit increases. As the number of switches increases, the reliability of the circuit decreases. In this paper a novel MLI topology, which employs lesser number of switches, is proposed. A simulation model of CMLI and the proposed MLI has been built in MATLAB/SIMULINK. The reliability of the CMLI and the new topology MLI is analyzed by using MIL-HDBK-217.  </p>


Author(s):  
Ujwala Gajula Et.al

Multilevel inverters (MLIs) have been extensively used and gained interest over last few decades in industrial and grid connected renewable energy applications because of its numerous merits. Besides various advantages like obtaining reduced harmonic distortion and lesser dv/dt stress across switches it has the capability of generating any number of levels. The theory of multilevel concept was initiated for high power and high/medium voltage applications as they are helpful in interfacing with renewable energy sources. By proper combination of the switches it generates a stair case output with reduced harmonic distortion because of this MLI is widely used and it became one of the advanced power converter topology. The rise of new topologies has attained importance over conventional multilevel inverter topologies, which generates more number of levels with reduced switch components. This paper presents various conventional MLI topologies and hybrid MLI topologies for renewable energy applications. Also, this review paper includes different modulation strategies which plays an important role to improve the overall performance of MLI.


Multilevel inverters are widely used for high power and high voltage applications. The performance of multilevel inverters are superior to conventional two level inverters in terms of reduced total harmonic distortion, higher dc link voltages, lower electromagnetic interference and increased quality in the output voltage waveform. This paper presents a single phase hybrid eleven level multilevel inverter topology with reduced switch count to compensate the above mentioned disadvantages. This paper also presents various high switching frequency based multi carrier pulse width modulation strategies such as Phase Disposition PWM Strategy (PDPWM), Phase Opposition and Disposition PWM Strategy (PODPWM), Alternate Phase opposition Disposition PWM (APODPWM), Carrier Overlapping PWM (COPWM), Variable frequency carrier PWM (VFPWM), Third Harmonic Injection PWM (TFIPWM) applied to the proposed eleven level multilevel inverter and is analyzed for RL load. FFT analysis is carried out and total harmonic distortion, fundamental output voltage are calculated. Simulation is carried out in MATLAB/SMULINK.


Author(s):  
Hemalatha Javvaji ◽  
Basavaraja Banakara

This paper proposes a Hybridized Symmetric Cascaded Multilevel Inverter for voltage levels ranging from 5 levels to 17 levels. The proposed Multi Level Inverter (MLI) topology is built using a modified H-bridge inverter that results in an increased output voltage levels with a smaller number of solid-state switches. This technique enhances the h-bridge configuration from three level to five level by means of a bi-directional switch at source. Gating pulses of hybridized symmetric MLI are generated through staircase modulation. The operation and performance of the proposed topology is tested for different output voltage levels, simulation results prove that the proposed technique results in less THD at all levels with lesser power consumption and are easily applicable for renewable energy applications.


Author(s):  
M. H. Yatim ◽  
A. Ponniran ◽  
M. A. Zaini ◽  
M. S. Shaili ◽  
N. A. S. Ngamidun ◽  
...  

The purpose of this study is to analyze the operation and design of symmetrical and asymmetrical multilevel inverter structures with reduced number of switching devices. In this study, the term of conventional inverter is defined as a single cascaded inverter. Specifically, the inverter operates in three complete loops and only produces 2-level and 3-level of output voltages. Usually, cascaded structure suffers from the high total harmonic distortion. Thus, by considering multilevel structure of inverter, low total harmonic distortion reduction and voltage stress reduction on switching devices can be archived. Sinusoidal pulse width modulation and modified square pulse width modulation are used as modulation techniques in switching schemes of the designed multilevel inverters. The findings indicate that, the designed multilevel structure cause low total harmonics distortion at the output voltage. Furthermore, the asymmetrical structure is producing the same output voltage levels with reduced number of switching devices compared to the symmetrical structure is experimentally confirmed. The findings show that the total harmonic distortion for 7-level (symmetrical) and 9-level (asymmetrical) are 16.45% and 15.22%, respectively.


10.29007/m2mq ◽  
2018 ◽  
Author(s):  
Shubham R. Patel ◽  
Gaurang K. Sharma ◽  
Ashish R. Patel

Multilevel inverter allows the production of high voltage with lower harmonic distortion in ac output and it eliminates the need of transformer. With the usage of multilevel inverter, we can get the required ac voltage output from multiple dc voltage rails. One of the disadvantage in it is the unbalancing of dc link capacitor voltage. The basic aim of this paper is the balancing of dc link capacitor voltage in diode-clamped multilevel inverter. There are different approaches which could be used for balancing of the capacitor voltage. In this paper, the method of additional auxiliary circuit in the form of Two-level Boost converter is being adopted to balance the inner capacitor voltages so as to get the required multilevel output. This balancing leads to the reliability in the inverter output voltage and extension in life of capacitor. The simulations for this are being performed in MATLAB SIMULINK® and the result are being analyzed for the same by employing it for different load condition. The scheme thus offer the proper balancing of capacitor voltage.


Author(s):  
V. Arun ◽  
B. Shanthi ◽  
M. Arumugam

This paper proposes a binary DC source reduced switch 7-level inverter. Binary DC source reduced switch inverter is triggered by the Unipolar PWM strategy having sinusoidal and trapezoidal reference with triangular carriers. These Pulse Width Modulating (PWM) strategies include Phase Disposition (PD), Alternate Phase Opposition Disposition (APOD), Carrier Overlapping (CO). Performance factors like Total Harmonic Distortion (THD), VRMS (fundamental) and crest factor are evaluated for various modulation indices. Simulations were performed using MATLAB-SIMULINK. It is observed that UPDPWM strategy with trapezoidal reference provides output with relatively low distortion and UCOPWM strategy with trapezoidal reference provides relatively higher fundamental RMS output voltage.


2012 ◽  
Vol 229-231 ◽  
pp. 2380-2384
Author(s):  
Bing Yi Wang ◽  
Shuang Zhai ◽  
Xiao Qian Zhu

In order to improve the quality of cascade multilevel inverter’s output voltage, this paper introduces an optimization harmonic elimination control technique. The harmonic of cascade multilevel inverter is controlled by the switch angels of inverter units. Through this technique, switch angels eliminate the low and middle frequency harmonic compositions and at the same time make total harmonic distortion rate of cascade multilevel inverter low are found. The correctness and accuracy of optimization harmonic elimination control technique are validated by simulation and experiment model.


Sign in / Sign up

Export Citation Format

Share Document