scholarly journals Measuring accuracy of Dataset using Deep Learning Algorithm RMSProp Algorithm

Author(s):  
Sanjana Naidu Gedela

Abstract: Over the last few years, there have been many significant improvements in the field of AI, machine learning, deep learning are being used in various industries and research. In order to train the deep learning models learning of parameters plays a major role, here the reduction of loss incurred during the training process is the main objective. In a supervised mode of learning, a model is given the data samples and their respective outcomes. When a model generates an output, it compares it with the desired output and then takes the difference of generated and desired outputs and then attempts to bring the generated output close to the desired output. This is achieved through optimization algorithms. Though many kinds of clinical methods have been employed to detect whether patients have heart disease or not by number of features from patients. but it’s still a challenging task due to the multitude of data elements involved. The motive of our project is to save human resources in medical centers and improve accuracy of diagnosis. In our project we used an RMS prop optimizer. The purpose is to decide how many hidden layers need to be selected and how many neurons need to be selected in each and every hidden layer by looking at the dataset and to give the application of deep learning to the health care sector so that we can minimize the costs of treatment and help in proactive actions. We want to show that we can increase the accuracy of the project by taking stability along with accuracy into consideration. Index Terms: RMS Prop, Machine Learning, Deep Learning, number of features, proactive actions

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


Author(s):  
Fawziya M. Rammo ◽  
Mohammed N. Al-Hamdani

Many languages identification (LID) systems rely on language models that use machine learning (ML) approaches, LID systems utilize rather long recording periods to achieve satisfactory accuracy. This study aims to extract enough information from short recording intervals in order to successfully classify the spoken languages under test. The classification process is based on frames of (2-18) seconds where most of the previous LID systems were based on much longer time frames (from 3 seconds to 2 minutes). This research defined and implemented many low-level features using MFCC (Mel-frequency cepstral coefficients), containing speech files in five languages (English. French, German, Italian, Spanish), from voxforge.org an open-source corpus that consists of user-submitted audio clips in various languages, is the source of data used in this paper. A CNN (convolutional Neural Networks) algorithm applied in this paper for classification and the result was perfect, binary language classification had an accuracy of 100%, and five languages classification with six languages had an accuracy of 99.8%.


2021 ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background: Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods: We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results: The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion: IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 279 ◽  
Author(s):  
Bambang Susilo ◽  
Riri Fitri Sari

The internet has become an inseparable part of human life, and the number of devices connected to the internet is increasing sharply. In particular, Internet of Things (IoT) devices have become a part of everyday human life. However, some challenges are increasing, and their solutions are not well defined. More and more challenges related to technology security concerning the IoT are arising. Many methods have been developed to secure IoT networks, but many more can still be developed. One proposed way to improve IoT security is to use machine learning. This research discusses several machine-learning and deep-learning strategies, as well as standard datasets for improving the security performance of the IoT. We developed an algorithm for detecting denial-of-service (DoS) attacks using a deep-learning algorithm. This research used the Python programming language with packages such as scikit-learn, Tensorflow, and Seaborn. We found that a deep-learning model could increase accuracy so that the mitigation of attacks that occur on an IoT network is as effective as possible.


2021 ◽  
Author(s):  
Sidhant Idgunji ◽  
Madison Ho ◽  
Jonathan L. Payne ◽  
Daniel Lehrmann ◽  
Michele Morsilli ◽  
...  

<p>The growing digitization of fossil images has vastly improved and broadened the potential application of big data and machine learning, particularly computer vision, in paleontology. Recent studies show that machine learning is capable of approaching human abilities of classifying images, and with the increase in computational power and visual data, it stands to reason that it can match human ability but at much greater efficiency in the near future. Here we demonstrate this potential of using deep learning to identify skeletal grains at different levels of the Linnaean taxonomic hierarchy. Our approach was two-pronged. First, we built a database of skeletal grain images spanning a wide range of animal phyla and classes and used this database to train the model. We used a Python-based method to automate image recognition and extraction from published sources. Second, we developed a deep learning algorithm that can attach multiple labels to a single image. Conventionally, deep learning is used to predict a single class from an image; here, we adopted a Branch Convolutional Neural Network (B-CNN) technique to classify multiple taxonomic levels for a single skeletal grain image. Using this method, we achieved over 90% accuracy for both the coarse, phylum-level recognition and the fine, class-level recognition across diverse skeletal grains (6 phyla and 15 classes). Furthermore, we found that image augmentation improves the overall accuracy. This tool has potential applications in geology ranging from biostratigraphy to paleo-bathymetry, paleoecology, and microfacies analysis. Further improvement of the algorithm and expansion of the training dataset will continue to narrow the efficiency gap between human expertise and machine learning.</p>


2021 ◽  
Author(s):  
Donghwan Yun ◽  
Semin Cho ◽  
Yong Chul Kim ◽  
Dong Ki Kim ◽  
Kook-Hwan Oh ◽  
...  

BACKGROUND Precise prediction of contrast media-induced acute kidney injury (CIAKI) is an important issue because of its relationship with worse outcomes. OBJECTIVE Herein, we examined whether a deep learning algorithm could predict the risk of intravenous CIAKI better than other machine learning and logistic regression models in patients undergoing computed tomography. METHODS A total of 14,185 cases that underwent intravenous contrast media for computed tomography under the preventive and monitoring facility in Seoul National University Hospital were reviewed. CIAKI was defined as an increase in serum creatinine ≥0.3 mg/dl within 2 days and/or ≥50% within 7 days. Using both time-varying and time-invariant features, machine learning models, such as the recurrent neural network (RNN), light gradient boosting machine, extreme boosting machine, random forest, decision tree, support vector machine, κ-nearest neighboring, and logistic regression, were developed using a training set, and their performance was compared using the area under the receiver operating characteristic curve (AUROC) in a test set. RESULTS CIAKI developed in 261 cases (1.8%). The RNN model had the highest AUROC value of 0.755 (0.708–0.802) for predicting CIAKI, which was superior to those obtained from other machine learning models. Although CIAKI was defined as an increase in serum creatinine ≥0.5 mg/dl and/or ≥25% within 3 days, the highest performance was achieved in the RNN model with an AUROC of 0.716 (0.664–0.768). In the feature ranking analysis, albumin level was the most highly contributing factor to RNN performance, followed by time-varying kidney function. CONCLUSIONS Application of a deep learning algorithm improves the predictability of intravenous CIAKI after computed tomography, representing a basis for future clinical alarming and preventive systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Sheng Huang ◽  
Xiaofei Fan ◽  
Lei Sun ◽  
Yanlu Shen ◽  
Xuesong Suo

Traditionally, the classification of seed defects mainly relies on the characteristics of color, shape, and texture. This method requires repeated extraction of a large amount of feature information, which is not efficiently used in detection. In recent years, deep learning has performed well in the field of image recognition. We introduced convolutional neural networks (CNNs) and transfer learning into the quality classification of seeds and compared them with traditional machine learning algorithms. Experiments showed that deep learning algorithm was significantly better than the machine learning algorithm with an accuracy of 95% (GoogLeNet) vs. 79.2% (SURF+SVM). We used three classifiers in GoogLeNet to demonstrate that network accuracy increases as the depth of the network increases. We used the visualization technology to obtain the feature map of each layer of the network in CNNs and used the heat map to represent the probability distribution of the inference results. As an end-to-end network, CNNs can be easily applied for automated seed manufacturing.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jian Li ◽  
Yongyan Zhao

As the national economy has entered a stage of rapid development, the national economy and social development have also ushered in the “14th Five-Year Plan,” and the country has also issued support policies to encourage and guide college students to start their own businesses. Therefore, the establishment of an innovation and entrepreneurship platform has a significant impact on China’s economy. This gives college students great support and help in starting a business. The theory of deep learning algorithms originated from the development of artificial neural networks and is another important field of machine learning. As the computing power of computers has been greatly improved, especially the computing power of GPU can quickly train deep neural networks, deep learning algorithms have become an important research direction. The deep learning algorithm is a nonlinear network structure and a standard modeling method in the field of machine learning. After modeling various templates, they can be identified and implemented. This article uses a combination of theoretical research and empirical research, based on the views and research content of some scholars in recent years, and introduces the basic framework and research content of this article. Then, deep learning algorithms are used to analyze the experimental data. Data analysis is performed, and relevant concepts of deep learning algorithms are combined. This article focuses on exploring the construction of an IAE (innovation and entrepreneurship) education platform and making full use of the role of deep learning algorithms to realize the construction of innovation and entrepreneurship platforms. Traditional methods need to extract features through manual design, then perform feature classification, and finally realize the function of recognition. The deep learning algorithm has strong data image processing capabilities and can quickly process large-scale data. Research data show that 49.5% of college students and 35.2% of undergraduates expressed their interest in entrepreneurship. Entrepreneurship is a good choice to relieve employment pressure.


Sign in / Sign up

Export Citation Format

Share Document