scholarly journals Double Production in Groundnut with Phosphatic Biofertilizers

Author(s):  
Dr. Ram Bajaj

Abstract: Groundnut (Arachis hypogea L., 2n=20) is nitrogen fixing pulse crop, belong to Leguminocae family. The present study conducted on production of groundnut with phosphatic biofertilizers. The experiment was conducted at Madhav village and Sattasar village in May, 2015. The mycorrhiza solid powder dissolved with molasses + water to form organic product. The seed poured in the formulated organic product for 24 hrs. Later, the seed was placed in the prepared land. The seed emerged from the soil in 7-10 days and the flower appeared in the plant within 35 days after sowing. The healthy nodule was formed in the root organ with application mycorrhiza solid powder. The application of mycorrhiza solid powder progresses morphological growth, yield, soil property and soil biology. Keywords: groundnut, production, biofertilizer, nodule formation

2017 ◽  
Vol 84 (5) ◽  
Author(s):  
Seifeddine Ben Tekaya ◽  
Trina Guerra ◽  
David Rodriguez ◽  
Jeffrey O. Dawson ◽  
Dittmar Hahn

ABSTRACTActinorhizal plants form nitrogen-fixing root nodules in symbiosis with soil-dwelling actinobacteria within the genusFrankia, and specificFrankiataxonomic clusters nodulate plants in corresponding host infection groups. In same-soil microcosms, we observed that some host species were nodulated (Alnus glutinosa,Alnus cordata,Shepherdia argentea,Casuarina equisetifolia) while others were not (Alnus viridis,Hippophaë rhamnoides). Nodule populations were represented by eight different sequences ofnifHgene fragments. Two of these sequences characterized frankiae inS. argenteanodules, and three others characterized frankiae inA. glutinosanodules. Frankiae inA. cordatanodules were represented by five sequences, one of which was also found in nodules fromA. glutinosaandC. equisetifolia, while another was detected in nodules fromA. glutinosa. Quantitative PCR assays showed that vegetation generally increased the abundance of frankiae in soil, independently of the target gene (i.e.,nifHor the 23S rRNA gene). Targeted Illumina sequencing ofFrankia-specificnifHgene fragments detected 24 unique sequences from rhizosphere soils, 4 of which were also found in nodules, while the remaining 4 sequences in nodules were not found in soils. Seven of the 24 sequences from soils represented >90% of the reads obtained in most samples; the 2 most abundant sequences from soils were not found in root nodules, and only 2 of the sequences from soils were detected in nodules. These results demonstrate large differences between detectableFrankiapopulations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specificFrankiapopulations in soils.IMPORTANCEThe nitrogen-fixing actinobacteriumFrankiaforms root nodules on actinorhizal plants, with members of specificFrankiataxonomic clusters nodulating plants in corresponding host infection groups. We assessedFrankiadiversity in root nodules of different host plant species, and we related specific populations to the abundance and relative distribution of indigenous frankiae in rhizosphere soils. Large differences were observed between detectableFrankiapopulations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specificFrankiapopulations in soils but rather results from plants potentially selecting frankiae from the soil for root nodule formation. These data also highlight the necessity of using a combination of different assessment tools so as to adequately address methodological constraints that could produce contradictory data sets.


1981 ◽  
Vol 59 (1) ◽  
pp. 34-39 ◽  
Author(s):  
S. L. Rose ◽  
C. T. Youngberg

Symbiotic associations were established between nitrogen-fixing nonleguminous (actinorrhizal) snowbrush (Ceanothus velutinus Dougl.) seedlings and two categories of microorganisms: vesicular–arbuscular (VA) mycorrhizal fungi and a filamentous actinomycete capable of inducing nodule formation. The actinomycete is housed in nodules where fixation of atmospheric dinitrogen occurs and is made available to the host plant; the mycorrhizal fungus is both inter- and intra-cellular within the root tissue and may be found within the nodules. The two major nutrients, N and P, are made available and can be supplied to the host plant by these two symbiotic microorganisms. The root system of snowbrush seedlings was dually colonized by VA mycorrhizal fungi and a nitrogen-fixing actinomycete and the possibility of a direct interaction between the endophytes in the symbioses was investigated. Dually infected plants showed increases in total dry weight of shoots and roots, number of nodules, weight of nodular tissue, as well as higher levels of N, Ca2+, and P, and an increase in nitrogenase activity as measured by acetylene reduction.


2019 ◽  
Vol 11 (3) ◽  
pp. 673-679 ◽  
Author(s):  
Anju B. Raj ◽  
Sheeja K. Raj

Zn plays major role in many physiological processes viz., chlorophyll formation, pollen formation, fertilization, protein synthesis, cell elongation, nodule formation etc. Hence, Zn nutrition favourably influences the growth, yield, physiological parameters and nodule formation in pulses. Similar to that of Zn, B also plays a major role in the functioning of reproductive tissues, structural integrity of plasma membrane, sugar transport, nodule development etc. Boron nutrition reduces the flower drop, increases the pod setting in pulses and also increased nodulation in pulses. The review elaborates the effect of Zn and B nutrition on the physiological, growth and yield parameters and yield of pulses and their effect on nodule formation and uptake of nutrients in pulses.


2008 ◽  
Vol 190 (20) ◽  
pp. 6846-6856 ◽  
Author(s):  
Miguel Angel Vences-Guzmán ◽  
Otto Geiger ◽  
Christian Sohlenkamp

ABSTRACT Sinorhizobium meliloti contains phosphatidylglycerol, cardiolipin, phosphatidylcholine, and phosphatidylethanolamine (PE) as major membrane lipids. PE is formed in two steps. In the first step, phosphatidylserine synthase (Pss) condenses serine with CDP-diglyceride to form phosphatidylserine (PS), and in the second step, PS is decarboxylated by phosphatidylserine decarboxylase (Psd) to form PE. In this study we identified the sinorhizobial psd gene coding for Psd. A sinorhizobial mutant deficient in psd is unable to form PE but accumulates the anionic phospholipid PS. Properties of PE-deficient mutants lacking either Pss or Psd were compared with those of the S. meliloti wild type. Whereas both PE-deficient mutants grew in a wild-type-like manner on many complex media, they were unable to grow on minimal medium containing high phosphate concentrations. Surprisingly, the psd-deficient mutant could grow on minimal medium containing low concentrations of inorganic phosphate, while the pss-deficient mutant could not. Addition of choline to the minimal medium rescued growth of the pss-deficient mutant, CS111, to some extent but inhibited growth of the psd-deficient mutant, MAV01. When the two distinct PE-deficient mutants were analyzed for their ability to form a nitrogen-fixing root nodule symbiosis with their alfalfa host plant, they behaved strikingly differently. The Pss-deficient mutant, CS111, initiated nodule formation at about the same time point as the wild type but did form about 30% fewer nodules than the wild type. In contrast, the PS-accumulating mutant, MAV01, initiated nodule formation much later than the wild type and formed 90% fewer nodules than the wild type. The few nodules formed by MAV01 seemed to be almost devoid of bacteria and were unable to fix nitrogen. Leaves of alfalfa plants inoculated with the mutant MAV01 were yellowish, indicating that the plants were starved for nitrogen. Therefore, changes in lipid composition, including the accumulation of bacterial PS, prevent the establishment of a nitrogen-fixing root nodule symbiosis.


2020 ◽  
Vol 71 (5) ◽  
pp. 1668-1680 ◽  
Author(s):  
Nhung T Hoang ◽  
Katalin Tóth ◽  
Gary Stacey

Abstract Under nitrogen starvation, most legume plants form a nitrogen-fixing symbiosis with Rhizobium bacteria. The bacteria induce the formation of a novel organ called the nodule in which rhizobia reside as intracellular symbionts and convert atmospheric nitrogen into ammonia. During this symbiosis, miRNAs are essential for coordinating the various plant processes required for nodule formation and function. miRNAs are non-coding, endogenous RNA molecules, typically 20–24 nucleotides long, that negatively regulate the expression of their target mRNAs. Some miRNAs can move systemically within plant tissues through the vascular system, which mediates, for example, communication between the stem/leaf tissues and the roots. In this review, we summarize the growing number of miRNAs that function during legume nodulation focusing on two model legumes, Lotus japonicus and Medicago truncatula, and two important legume crops, soybean (Glycine max) and common bean (Phaseolus vulgaris). This regulation impacts a variety of physiological processes including hormone signaling and spatial regulation of gene expression. The role of mobile miRNAs in regulating legume nodule number is also highlighted.


2012 ◽  
Vol 61 (5) ◽  
pp. 544-553 ◽  
Author(s):  
Masaki Hayashi ◽  
Yuichi Saeki ◽  
Michiyo Haga ◽  
Kyuya Harada ◽  
Hiroshi Kouchi ◽  
...  

2006 ◽  
Vol 188 (17) ◽  
pp. 6168-6178 ◽  
Author(s):  
Christian Staehelin ◽  
Lennart S. Forsberg ◽  
Wim D'Haeze ◽  
Mu-Yun Gao ◽  
Russell W. Carlson ◽  
...  

ABSTRACT Rhizobia are nitrogen-fixing bacteria that establish endosymbiotic associations with legumes. Nodule formation depends on various bacterial carbohydrates, including lipopolysaccharides, K-antigens, and exopolysaccharides (EPS). An acidic EPS from Rhizobium sp. strain NGR234 consists of glucosyl (Glc), galactosyl (Gal), glucuronosyl (GlcA), and 4,6-pyruvylated galactosyl (PvGal) residues with β-1,3, β-1,4, β-1,6, α-1,3, and α-1,4 glycoside linkages. Here we examined the role of NGR234 genes in the synthesis of EPS. Deletions within the exoF, exoL, exoP, exoQ, and exoY genes suppressed accumulation of EPS in bacterial supernatants, a finding that was confirmed by chemical analyses. The data suggest that the repeating subunits of EPS are assembled by an ExoQ/ExoP/ExoF-dependent mechanism, which is related to the Wzy polymerization system of group 1 capsular polysaccharides in Escherichia coli. Mutation of exoK (NGRΩexoK), which encodes a putative glycanase, resulted in the absence of low-molecular-weight forms of EPS. Analysis of the extracellular carbohydrates revealed that NGRΩexoK is unable to accumulate exo-oligosaccharides (EOSs), which are O-acetylated nonasaccharide subunits of EPS having the formula Gal(Glc)5(GlcA)2PvGal. When used as inoculants, both the exo-deficient mutants and NGRΩexoK were unable to form nitrogen-fixing nodules on some hosts (e.g., Albizia lebbeck and Leucaena leucocephala), but they were able to form nitrogen-fixing nodules on other hosts (e.g., Vigna unguiculata). EOSs of the parent strain were biologically active at very low levels (yield in culture supernatants, ∼50 μg per liter). Thus, NGR234 produces symbiotically active EOSs by enzymatic degradation of EPS, using the extracellular endo-β-1,4-glycanase encoded by exoK (glycoside hydrolase family 16). We propose that the derived EOSs (and not EPS) are bacterial components that play a crucial role in nodule formation in various legumes.


Sign in / Sign up

Export Citation Format

Share Document