scholarly journals Modelling, FEA analysis and Optimization of Mono Composite Leaf Spring Using ANSYS

Author(s):  
Abhyuday Parihar

Abstract: Conventional leaf spring made up of conventional materials like plain carbon steel are heavy and add weight to vehicle which reduces mileage. This necessitates new material which is light in weight and could provide adequate strength to leaf spring along with higher strain energy absorption to absorb shocks. The current research is intended to study the structural and vibrational characteristics of leaf spring made of P100/6061 Al, P100/AZ 91C Mg and structural steel materials. The investigation is carried out using ANSYS FEA software. The FEA results have shown that P100/AZ/ 91C generated lower stresses as compared to P100/6061 Al and structural steel material. The modal analysis of leaf spring aided to determine mass participation factor and mode shapes corresponding to each frequency. Keywords: Leaf Spring, Energy Absorption, Structural Steel Materials, ANSYS FEA, Frequency.

Rocker arm is vital component in valve actuating mechanism of an IC engine. [2] There is research is going on in industries for optimum design i.e. reduction in weight and increase in strength. Also failure of rocker arm is major concern, so in this project we have modeled the rocker arm in CAD software and done FEA analysis of the same model for different materials.[5][6] After that we have taken better material for modification to get optimum results, in this case we have taken structural steel material.


Author(s):  
Jiacheng Zhou ◽  
Chao Hu ◽  
Ziqiu Wang ◽  
Zhengfa Ren ◽  
Xiaoyu Wang ◽  
...  

By studying dynamic characteristics of the leaf spring system, a new elastic component is designed to reduce the working load and to a certain extent to ensure the linearity as well as increase the amplitude in the vertical and horizontal directions in vibration screen. The modal parameters, amplitudes, and amplification factors of the leaf spring system are studied by simulation and experiment. The modal results show that the leaf spring system vibrates in horizontal and vertical directions in first and second mode shapes, respectively. It is conducive to loosening and moving the particles on the vibration screen. In addition, it is found that the maximum amplitude and amplification factor in the horizontal direction appear at 300 r/min (5 Hz) while those in the vertical direction appear at 480 r/min (8 Hz), which are higher than those in the disc spring system. Moreover, the amplitude of the leaf spring system increases proportionally with the increase of exciting force while the amplification factors are basically the same under different exciting forces, indicating the good linearity of the leaf spring system. Furthermore, the minimum exciting force occurs in the leaf spring system under the same amplitude by comparing the exciting force among different elastic components. The above works can provide guidance for the industrial production in vibration screen.


1966 ◽  
Vol 56 (6) ◽  
pp. 1207-1226
Author(s):  
W. O. Keightley

Abstract An earth dam was excited into vibrations, in the upstream-downstream direction, by four rotating eccentric-mass vibration generators which were operated on the crest. Natural frequencies, mode shapes, and equivalent viscous modal damping constants of the dam were revealed by the forced vibrations. A theoretical analysis of the dam, based on consideration of shearing deformations only, shows moderately good agreement with the behavior which was observed at the lower frequencies.


2019 ◽  
Vol 31 ◽  
pp. 10-25
Author(s):  
Rushikesh Attarde ◽  
Abhijeet Chougule ◽  
Rohit Magdum

The following study involves designing of a go-kart chassis using CAD and CAE tools. The chassis is the supporting base for every automobile and chassis is subjected to various loads due to self-weight, acceleration, braking, bumps and cornering. CATIA Software was used for designing the CAD model of the chassis and ANSYS software was used for the FEA analysis of the chassis under different loading conditions. The calculations of these forces due to impacts are required to design a functional chassis for go-kart and having an adequate stiffness to avoid any vibration or resulting resonance. Ten mode shapes and natural frequencies are studied for vibration characteristics using Modal analysis in ANSYS. For impact analysis the loads in terms of gravitational acceleration are applied for the front, side and rear impact as 4g, 2g and 2g respectively and the results are compared to get the best material among the four selected materials AISI 4130, AISI 1080, AISI 1020 and AISI 1026.


2012 ◽  
Vol 19 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Seyyed M. Hasheminejad ◽  
Yaser Mirzaei

A three-dimensional elasticity-based continuum model is developed for describing the free vibrational characteristics of an important class of isotropic, homogeneous, and completely free structural bodies (i.e., finite cylinders, solid spheres, and rectangular parallelepipeds) containing an arbitrarily located simple inhomogeneity in form of a spherical or cylindrical defect. The solution method uses Ritz minimization procedure with triplicate series of orthogonal Chebyshev polynomials as the trial functions to approximate the displacement components in the associated elastic domains, and eventually arrive at the governing eigenvalue equations. An extensive review of the literature spanning over the past three decades is also given herein regarding the free vibration analysis of elastic structures using Ritz approach. Accuracy of the implemented approach is established through proper convergence studies, while the validity of results is demonstrated with the aid of a commercial FEM software, and whenever possible, by comparison with other published data. Numerical results are provided and discussed for the first few clusters of eigen-frequencies corresponding to various mode categories in a wide range of cavity eccentricities. Also, the corresponding 3D mode shapes are graphically illustrated for selected eccentricities. The numerical results disclose the vital influence of inner cavity eccentricity on the vibrational characteristics of the voided elastic structures. In particular, the activation of degenerate frequency splitting and incidence of internal/external mode crossings are confirmed and discussed. Most of the results reported herein are believed to be new to the existing literature and may serve as benchmark data for future developments in computational techniques.


1985 ◽  
Vol 107 (1) ◽  
pp. 187-196 ◽  
Author(s):  
J. C. MacBain ◽  
R. E. Kielb ◽  
A. W. Leissa

The experimental portion of a joint government/industry/university research study on the vibrational characteristics of twisted cantilevered plates is presented. The overall purpose of the research study was to assess the capabilities and limitations of existing analytical methods in predicting the vibratory characteristics of twisted plates. Thirty cantilevered plates were precision machined at the Air Force’s Aero Propulsion Laboratory. These plates, having five different degrees of twist, two thicknesses, and three aspect ratios representative of turbine engine blade geometries, were tested for their vibration mode shapes and frequencies. The resulting nondimensional frequencies and selected mode shapes are presented as a function of plate tip twist. The trends of the plate natural frequencies as a function of the governing geometric parameters are discussed. The effect of support compliance on the plate natural frequency and its impact on numerically modeling twisted plates is also presented.


2021 ◽  
Vol 1205 (1) ◽  
pp. 012008
Author(s):  
M Drdlova ◽  
P Bibora ◽  
V Prachar

Abstract This study introduces cementitious composite with rubber granulate and waste steel fibres as a new material for construction industry with an enhanced energy absorption capability and impact toughness. Detailed research on physico-mechanical properties of high-performance concrete with waste steel fibres and partial replacement of the aggregates by rubber granulate was performed, with emphasis on impact energy absorption potential. Different aggregate replacement ratios (0–30% wt.) and fibre amount (0–3% wt.) were investigated. The influence of rubber sizes, rubber content and steel fibre content on the mechanical parameters of the rubberized concrete at both quasistatic and dynamic loads was evaluated and discussed. With increasing amount of rubber granulate, the concrete suffered from reduction of its mechanical parameters – compressive and flexural strength, however the energy dissipation capability showed rising trend. This study demonstrated the potential of rubberized concrete with waste steel fibres for use in structures with higher impact resistance requirements.


Author(s):  
Carsten Schedlinski ◽  
Michael Link

Abstract Base excitation testing is used in industry in order to qualify mechanical systems with respect to specified base acceleration levels. This type of excitation only allows to identify eigenfrequencies, mode shapes and modal damping values of the fixed/free system. Modal masses, mass participation factors and effective masses of the fixed/free system as well as the modal data of the free/free system cannot be identified because the excitation forces are unknown. This paper introduces an approach to identify these modal data as well. For this purpose the reaction forces at the table/structure interface have to be measured also. Furthermore, the verification of the theory using a laboratory test structure will be presented.


Sign in / Sign up

Export Citation Format

Share Document