Material Based FEA Analysis of a Go-Kart Chassis: A Comparative Study

2019 ◽  
Vol 31 ◽  
pp. 10-25
Author(s):  
Rushikesh Attarde ◽  
Abhijeet Chougule ◽  
Rohit Magdum

The following study involves designing of a go-kart chassis using CAD and CAE tools. The chassis is the supporting base for every automobile and chassis is subjected to various loads due to self-weight, acceleration, braking, bumps and cornering. CATIA Software was used for designing the CAD model of the chassis and ANSYS software was used for the FEA analysis of the chassis under different loading conditions. The calculations of these forces due to impacts are required to design a functional chassis for go-kart and having an adequate stiffness to avoid any vibration or resulting resonance. Ten mode shapes and natural frequencies are studied for vibration characteristics using Modal analysis in ANSYS. For impact analysis the loads in terms of gravitational acceleration are applied for the front, side and rear impact as 4g, 2g and 2g respectively and the results are compared to get the best material among the four selected materials AISI 4130, AISI 1080, AISI 1020 and AISI 1026.

2011 ◽  
Vol 418-420 ◽  
pp. 1748-1751
Author(s):  
Wei Li ◽  
Ning Liu ◽  
Ning Li ◽  
Yan Jun Liu ◽  
Liang Ma

The 3D model of gear with asymmetric profile and double pressure angles is built by the autodesk inventor software. It is imported and analyzed by the ANSYS software. Then each order natural frequencies and mode shapes are obtained. So resonance and harmful mode shapes can be avoided, and dynamic performances of gear with asymmetric profile and double pressure angles is improved. This paper has a certain reference value for the dynamic design of other types of gears.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


2014 ◽  
Vol 578-579 ◽  
pp. 925-928
Author(s):  
Li Cai ◽  
Yue Gang Tan ◽  
Li Fan ◽  
Yi Xie

Analytical software has powerful features in structural analysis. This paper elaborates the modal of the mechanical plate-shell structure with three layers by ANSYS software ,from which natural frequencies and mode shapes are obtained. Based on this,taking the three layer structure applied with harmonic load as the study object,this paper analyzes the displacement change trend of different positions under different frequencies,and the displacement characteristic curves are obtained,which would provide a certain theoretical basis for the arrangement of measuring points and the yield characteristics analysis in subsequent structural detection.


2018 ◽  
Vol 217 ◽  
pp. 02002 ◽  
Author(s):  
Mohamad Hazwan Mohd Ghazali ◽  
Mohd Hafiz Zawawi ◽  
Nurul Husna Hassan ◽  
Mohd Rashid Mohd Radzi ◽  
Ahmad Zhafran Ahmad Mazlan ◽  
...  

The dynamic characteristics such as natural frequencies, mode shapes and frequency response function (FRF) are the important characteristics to be investigated to access the level of durability of any dam structures. These characteristics are important since it will be the reference information for any operational methods to be used for the dam structures. In this study, one of the real dam (i.e., Chenderoh Dam) that available in Malaysia is taken into consideration, where the dynamic analysis of the sector gate section of the dam structure is investigated. the real scale of the sector gate section is measured on site and modelled into the CAD software with the consideration of real build-in materials. Then, the finite element (FE) model is constructed in ANSYS software with the required boundary condition and meshing sensitivity analysis. From the result of modal analysis, 30 natural frequencies are determined in the range of 0.5904 Hz to 8.471 Hz together with the mode shapes but only the most significant natural frequencies will be shown in this paper. In addition, all three axes of the FRF graphs show an agreement for the highest natural frequency value at 7.95 Hz, where the maximum deflection occurred in x axis direction with 2.03 × 10-7 m.


2013 ◽  
Vol 423-426 ◽  
pp. 1889-1893
Author(s):  
Mo Wu Lu ◽  
Chang Lu ◽  
Xu Yang

In order to find the spindle box structural features. We use SolidWorks to establish solid model of the spindle box, and input the data to ANSYS by data interface provided the ANSYS software, and then calculate the static stress, natural frequencies and mode shapes which will provide a theoretical basis for dynamic analysis, design optimization.


Engine mounting bracket plays an important role in reducing vibration as well as noise. It is one of the main component of engine mounting assembly. The purpose of an engine mounting bracket is to support the power train system and to properly balance the engine. This paper includes the study of FEA analysis and optimization of existing engine mounting bracket. The CAD model is designed on basis of previous used bracket and Analysis is done in ANSYS Software. After analyzing it, the portion of bracket which gets failure is redesign and analyze again so that the modified bracket will sustain at new loading condition.


2013 ◽  
Vol 40 (1) ◽  
pp. 189-202
Author(s):  
Andjelka Hedrih ◽  
Marinko Ugrcic

To determine the vibration characteristics (natural frequencies and mode shapes) of a mouse embryo during microinjection the modal analysis is used. The spherical mouse embryo 60 ?m in diameter is modeled as elastic finite elements biostructure consisting of 6?m thick micromembrane and 38 ?m in diameter nucleus. Embryo modeling and modal analysis were based on the use of the finite elements method in the modal analysis system of ANSYS software. The modal analysis was carried out for first six modes of embryo natural frequencies. The numerical analysis of dependence of embryo own frequencies on the boundary conditions and external loads are presented. The relevant illustrations of the typical variations of the shape, deformation and particle velocities of vibrating embryo are given.


2014 ◽  
Vol 3 (2) ◽  
pp. 268
Author(s):  
Ahmed Ibrahim Razooqi ◽  
Hani Aziz Ameen ◽  
Kadhim Mijbel Mashloosh

Helical and slotted cylinder springs are indispensable elements in mechanical engineering. This paper investigates helical and slotted cylinder springs subjected to axial loads under static and dynamic conditions. The objective is to determine the stiffness of a circular cross-section helical coil compression spring and slotted cylinder springs with five sizes and dynamic characteristics. A theoretical and finite element models are developed and presented in order to describe the various steps undertaken to calculate the springs stiffnesses. Five cases of the springs geometric are presented. A finite element model was generated using ANSYS software and the stiffness matrix evaluated by applying a load along the springs axis, then calculating the corresponding changes in deformation. The stiffness is obtained by solving the changes of load and deformation. The natural frequencies, mode shapes and transient response of springs are also determined. Finally, a comparison of the stiffnesses are obtained using the theoretical methods and those obtained from the finite element analysis were made and good agreement are evident and it can be found that the stiffness of spring for the slotted cylinder spring is much larger than that for helical spring and the stiffness for slotted cylinder spring increases with the number of slots per section. Natural frequencies, mode shape and transient response of helical spring and slotted cylinder spring have been represented in ANSYS software and results have been compared and it found that the natural frequency has also increased in the same proportion of stiffness because the natural frequency is directly proportional to the stiffness for all the cases that have been studied. Keywords: ANSYS, Finite Element Analysis, Helical Spring, Slotted Cylinder Spring, Stiffness.


1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


Sign in / Sign up

Export Citation Format

Share Document