scholarly journals A Critical Review on Optimization of WEDM Process Using Taguchi Array

Author(s):  
Naveen Vats

Abstract: Wire electrical release machining (WEDM) innovation has developed at special case rate since it was first applied over long term prior.WEDM is a widely recognized unconventional material cutting process used to manufacture components with complex shapes and profiles of hard materials. In this thermal erosion process, there is no physical contact between the wire tool and work materials. Wire Electrical Discharge Machining (WEDM) is getting more tasks in fields like dies, punches, aero and many more. It is the very difficult task to get optimum process parameters for higher cutting efficiency. In WEDM process rough machining gives lesser accuracy and finish machining gives fine surface finish, but it reduces the machining speed. This review involves process, principle, literature and applications of WEDM using Taguchi array. Keywords: WEDM; Materials; Machine; Cutting efficiency; Optimization process.

2014 ◽  
Vol 704 ◽  
pp. 70-76
Author(s):  
Ruma Sen ◽  
P. Charkraborti ◽  
J. Debbarma

Wire electrical discharge machining (WEDM) is a specialized thermal machining process, capable of accurately machining parts with different hardness, complex shapes and sharp edges that are very difficult to be machined by the traditional machining processes. The practical technology of the WEDM process is based on the conventional EDM sparking phenomenon utilizing the widely accepted noncontact technique of material removal.In this paper, the effects of various process parameters of WEDM like pulse on time (Ton), peak current (IP), wire feed (WF) and wire tension (WT) have been investigated to study their impact on wear of wire of ELECTRONICA SPRINTCUT WEDM machine.It is found that the wear is influenced with increase in pulse on time (Ton) and wire tension.


Author(s):  
Naveen Vats

Abstract: Wire electrical discharge machining is extensively used in machining of conductive materials. The WEDM process has the ability to machine complex shapes and hard electrically conductive metal components precisely. The main goal of wire electrical discharge machine manufacturers and users are to achieve a better stability and high productivity of the process with desired accuracy and minimum surface damage.The main objectives of the present research are to experimentally study the effect of various process parameters like pulse on time, pulse off time, wire feed, and wire tension on the performance measures like material removal rate, surface roughness and wire wear ratio. WEDM is a widely recognized unconventional material cutting process used to manufacture components with complex shapes and profiles of hard materials. In this paper we are presenting the development of WEDEM process using various pre define parameters using Taguchi method. Index Terms: WEDM, doe, orthogonal array, parameters, Taguchi method, H13, HDS, mean of means, SF, MRR, Ra, etc.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Xin ◽  
Wei Liu

During the wire electrical discharge machining (WEDM) process, a large number of discharge pits and a recast layer are easily generated on the workpiece surface, resulting in high surface roughness. A discharge forming cutting-electrochemical machining method for fabricating single-crystal silicon is proposed in this study to solve this problem. On the same processing equipment, single-crystal silicon is first cut using the discharge forming cutting method. Second, electrochemical anodic reaction technology is used to dissolve the discharge pits and recast layer on the single-crystal silicon surface. The machining mechanism of this process, the surface elements of the processed single-crystal silicon and a comparison of the kerf width are analyzed through experiments. On this basis, the influence of the movement speed of the copper foil electrode during electrochemical anodic dissolution on the final surface roughness is qualitatively analyzed. The experimental results show that discharge forming cutting-electrochemical machining can effectively eliminate the electrical discharge pits and recast layer, which are caused by electric discharge cutting, on the surface of single-crystal silicon, thereby reducing the surface roughness of the workpiece.


2012 ◽  
Vol 630 ◽  
pp. 114-120 ◽  
Author(s):  
Mamidala Ramulu ◽  
Mathew Spaulding ◽  
P. Laxminarayana

To improve strength to weight ratios, the fiber reinforced polymer composite materials are often used in conjunction with another material, like metals, to form hybrid structure. This paper reports the feasibility of using wire electrical discharge machining (WEDM) for cutting Titanium/Graphite Hybrid Composites (TiGr). Slit and slot cuts with WEDM process has been performed. Cutting times and process parameters were recorded, and cut surface characteristics were evaluated both with an optical and scanning electron microscopy (SEM). The results in terms of cutting time, workpiece material removal rate, and damage were presented and discussed. It was found that use of WEDM is possible for machining advanced hybrid metal composite laminates with appropriate machine settings.


2008 ◽  
Vol 375-376 ◽  
pp. 303-307
Author(s):  
Zhen Long Wang ◽  
Wei Liang Zeng ◽  
Qiang Gao

Micro electrical discharge machining (EDM) with block electro discharge grinding (BEDG), is explored and assessed as a method for developing micro electrode, for wire electro discharge grinding (WEDG) has shortcoming of low working efficiency, especially in the case of micro machining. For fabricating micro electrode by BEDG, mechanics of initial clamping errors are analyzed, the technology of electrode movement is proposed to compensate the clamping errors and control the finish size of micro electrodes. On the basis of a great deal of experiments, the effect of working voltage on machining efficiency has been found out and been analyzed theoretically, threshold value of working voltage is determined to be about 30V.As shown by result with the technology, at a high machining speed, the minimum diameter of micro electrodes reaches 3*m, its slenderness ratio is more than 5.


Author(s):  
Prathik Jain Sudhir ◽  
Ravindra Holalu Venkatadas ◽  
Ugrasen Gonchikar

Abstract Wire Electrical Discharge Machining (WEDM) provides an effective solution for machining hard materials with intricate shapes. WEDM is a specialized thermal machining process is capable to accurately machining parts of hard materials with complex shapes. However, selection of process parameters for obtaining higher machining efficiency or accuracy in wire EDM is still not fully solved, even with the most up-to-date CNC WED machine. The study presents the machining of Titanium grade 2 material using L’16 Orthogonal Array (OA). The process parameters considered for the present work are pulse on time, pulse off time, current, bed speed, voltage and flush rate. Among these process parameters voltage and flush rate were kept constant and the other four parameters were varied for the machining. Molybdenum wire of 0.18mm is used as the electrode material. Titanium is used in engine applications such as rotors, compressor blades, hydraulic system components and nacelles. Its application can also be found in critical jet engine rotating and airframes components in aircraft industries. Firstly optimization of the process parameters was done to know the effect of most influencing parameters on machining characteristics viz., Surface Roughness (SR) and Electrode Wear (EW). Then the simpler functional relationship plots were established between the parameters to know the possible information about the SR and EW. This simpler method of analysis does not provide the information on the status of the material and electrode. Hence more sophisticated method of analysis was used viz., Artificial Neural Network (ANN) for the estimation of the experimental values. SR and EW parameters prediction was carried out successfully for 50%, 60% and 70% of the training set for titanium material using ANN. Among the selected percentage data, at 70% training set showed remarkable similarities with the measured value then at 50% and 60%.


2021 ◽  
Vol 1019 ◽  
pp. 121-128
Author(s):  
T. G. Sachidhananda ◽  
V. Adake Chandrashekhar

Electrical Discharge machining (EDM) is a nonconventional machining technique, which has been widely used to produce dies and mold. Harder Materials can be machined into complex shapes as long as they conduct electricity. Recent advances in the technologies brought the development of new engineering materials, which are hard to machine with traditional machining processes. Being one of these materials, ceramics possess some unique properties like piezoelectricity and tribological properties which are not found in metal and polymers. EDM is capable of machining these ceramics, given these materials have an adequately high electrical conductivity. Preparing conducting ceramics is pre-requisite for incorporating ceramics in EDM. Different techniques such as compaction, tape casting, extrusion, injection molding and slip casting are used form green ceramic body. These green bodies are subsequently sintered to obtain ceramic parts. Adding conducting elements in the ceramics while processing results in conducting ceramics. These additions increase hardness but fracture toughness of body is compromised. Ceramic parts can also be machined by using assisting electrode and pyrolytic carbon technique. This paper discusses the various methods of shaping conducting ceramics and its machining characteristics for EDM application


2019 ◽  
Vol 889 ◽  
pp. 115-122
Author(s):  
Van Tao Le ◽  
Tien Long Banh ◽  
Xuan Thai Tran ◽  
Nguyen Thi Hong Minh

Electrical discharge machining (EDM) process is widely used to process hard materials in the industry. The process of electrical discharge is changed and called PMEDM when alloy powder is added in the oil dielectric. In the current study, the effect of tungsten carbide alloy powder added in the dielectric on the surface roughness (Ra) and the micro hardness of surface (HV) status of the workpiece SKD61 after machining is investigated. Studies show that the surface roughness and the micro hardness of surface obtained by PMEDM is generally better than that by normal EDM. The method can be applied for improving surface quality such as improving strengthening of molds and machine parts.


Author(s):  
Ashwin Polishetty ◽  
Guy Littlefair

Titanium is known for its poor machinability characteristics due to its low thermal conductivity and high chemical reactivity. This article explores the machinability characteristics of selective laser melting (SLM) titanium alloy Ti-6Al-4V using wire cut electrical discharge machining (WEDM). For titanium alloys, exploring non-traditional machining operation such as WEDM is critical for a material failure or success in a design application. The research is to study the effect of parameters such as servo voltage, pulse on/off, and machining speed with respect to wire tension and wire feed rate on machinability. The outputs under consideration for evaluating machinability are metal removal rate (MRR) and surface finish under minimal interruption due to wire snaps. The article concludes by identifying the optimal factors responsible to produce an efficient and accurate cut with a minimum downtime.


Sign in / Sign up

Export Citation Format

Share Document