scholarly journals Using the Area of Contact between Layers as a Predictor for the Anisotropic Strength of Parts Produced by FDM

Author(s):  
Alexandre A. Cavalcante

Abstract: Fused Filament Fabrication (FFF), better known as FDM© (Fused Deposition Modeling) is an additive manufacturing process (AM) by which a physical object can be created from a 3D model generated in the computer, through layer-by-layer deposition of semi-melted plastic filaments. However, parts produced by the FDM process have different characteristics compared to parts produced by traditional methods such as plastic injection, especially with regard to mechanical properties related to stresses (tensile, compression, torsion and shear), due to the anisotropic nature of the process deposition. Many works have been carried out in order to determine the influence between the FDM process parameters and the mechanical characteristics of parts produced by this technology. Traditionally, the studied parameters comprise those that are adjusted in slicing software, which does not satisfactorily reflect the bond between the layers. This work uses the area of contact between the layers as the determining factor of the transverse tensile strength to bedding and suggests a methodology for the determination of this parameter. Using analysis of variance (ANOVA) and the Taguchi analysis method, we identified the contact area between the layers as the most relevant parameter for tensile strength in the transverse direction of the printed layers with a relevance of more than 95% over the others investigated parameters. From the survey of relevant properties, new tests were carried out to determine a mathematical model to predict the minimum slicing parameters that should be used to obtain the required strength. Keywords: Fused Deposition Modeling, Mechanical Strength, AM Anisotropic Property, Layer Bond Properties, PLA.

2014 ◽  
Vol 592-594 ◽  
pp. 1075-1079 ◽  
Author(s):  
Swayam Bikash Mishra ◽  
Siba Sankar Mahapatra

Fused Deposition Modeling (FDM) is one of the efficient rapid prototyping (RP) technologies that forms 3D objects by adding material layer by layer from CAD generated solid models. However, the FDM built part is hardly anisotropic in nature due to layer-by-layer build mechanism. Literature suggests that mechanical property, especially tensile strength, of FDM built part is severely affected by process parameters. Among all the parameters, contour number happens to be an important parameter because it reduces stress concentration resulting in avoidance of premature breakdown. Therefore, in this work contour number along with five important process parameters such as layer thickness, raster width, part orientation, raster angle and air gap are considered and their effect on tensile strength of FDM built parts is studied. Experiments are conducted using Face Centred Central Composite Design (FCCCD) in order to reduce the experimental runs. An optimal parameter setting has been suggested for the maximisation of tensile strength of the FDM built parts.


2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2019 ◽  
Vol 8 (3) ◽  
pp. 7635-7639

Influence of layer thickness nozzle temperature and angle on tensile strength of PLA fabricated with FDM (FFF) was experimentally investigated. Polylactic Acid (PLA) is a semi-crystalline and bio-friendly thermoplastic polymer has identified as important material in different applications due to its mechanical characteristics. Fused Deposition Modeling (FDM) is a one of the proved technology in Fused Filament Fabrication (FFF) technique in additive manufacturing process. In present investigation different specimens were fabricated using FDM technique with different layer height and different layer angles for finding influence of these manufacturing parameters on tensile strength of the specimen. Specimens were fabricated and tested as per ASTM D638 standard. It is clearly observed that tensile strength is more for +450 /-450 layer angle than the +00 /-0 0 layer angle for a given layer height(h=0.10 mm, h=0.15mm and h=0.20mm).The TAGUCHI analysis is carried with nozzle temperature, layer thickness and angle finding optimal values. It has been observed that, the optimal parameter is angle, which is equal to 30 0 .the ANOVA variation of angle layer with tensile strength has been observed that 18.10-31.90.


Enfoque UTE ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 13-27
Author(s):  
Juan Carlos Parra Mena ◽  
Erling Ricardo Gallardo Vizuete ◽  
Erick Damian Torres Peñaloza

The evaluation of the tensile strength of printed parts by means of fused deposition modeling (FDM) or fused filament fabrication (FFF) is essential, since parts whose resistance does not differ significantly depending on the percentage of filling used can be obtained, optimizing the use of the material. The present work details the analysis of polylactic acid (PLA) specimens manufactured according to ASTM D 638 with different percentages for the most commonly used filling patterns (Honeycomb, Octagram, Stars, Archimedean, Hilbert and Triangles). With the help of an analysis of variance and a design of experiments with a single factor, the appropriate percentages for printing parts according to the desired filling pattern are obtained.


2016 ◽  
Vol 36 (3) ◽  
pp. 110 ◽  
Author(s):  
Kenny Álvarez ◽  
Rodrigo F. Lagos ◽  
Miguel Aizpun

3D printing is a manufacturing process that is usually used for modeling and prototyping. One of the most popular printing techniques is fused deposition modeling (FDM), which is based on adding melted material layer by layer. Although FDM has several advantages with respect to other manufacturing materials, there are several problems that have to be faced. When setting the printing options, several parameters have to be taken into account, such as temperature, speed, infill percentage, etc. Selecting these parameters is often a great challenge for the user, and is generally solved by experience without considering the influence of variations in the parameters on the mechanical properties of the printed parts.This article analyzes the influence of the infill percentage on the mechanical properties of ABS (Acrylonitrile Butadiene Styrene) printed parts. In order to characterize this influence, test specimens for tensile strength and Charpy tests were printed with a Makerbot Replicator 2X printer, in which the infill percentage was varied but the rest of the printing parameters were kept constant. Three different results were analyzed for these tests: tensile strength, impact resistance, and effective printing time. Results showed that the maximum tensile force (1438N) and tensile stress (34,57MPa) were obtained by using 100% infill. The maximum impact resistance, 1,55J, was also obtained with 100% infill. In terms of effective printing time, results showed that printing with an infill range between 50% and 98% is not recommended, since the effective printing time is higher than with a 100% infill and the tensile strength and impact resistance are smaller. In addition, in comparing the results of our analysis with results from other authors, it can be concluded that the printer type and plastic roll significantly influence the mechanical properties of ABS parts.


2020 ◽  
Vol 870 ◽  
pp. 73-80
Author(s):  
Nuha Hadi Jasim Al Hasan

3D printing innovation, as a quick prototyping, utilize plastic or metal as the crude material to print the genuine parts layer by layer. In this way, it is likewise called added substance producing procedure. Contrasted and conventional assembling innovation, 3D printing innovation has evident points of interest in assembling items with complex shapes and structures. Fused deposition modeling (FDM) is one of the most broadly utilized 3D printing advances. Fibers of thermoplastic materials, for example, polylactic acid is for the most part utilized as crude materials. The present examination will concentrate on the effect of the infill density, percent on the flexural strength of polylactic acid. Bending test was performed on different infill density, percent of specimens. According to ASTM D638.14 standards, samples for testing are made in different infill density, percent (20, 30, 40, 50 and 60 %) by using a polylactic acid in 3D machine printing and their tensile tested and the parameters include different fill density, layer high of 0.1 mm , 0.2mm and 0.3 have an effect on the mechanical characterized while the time of printing the sample would be increased with increasing of fill density%. The tensile strength of polylactic acid samples was found at different fill density and a layer thickness. According to test measuring results that the tensile strength, maximum 47.1,47.4, and 48 MPa at 30%,40%,and 50% fill density respectively and 0.1mm height layer and the tensile strength minimum at 60% and 70 % fill density and 0.1 mm height layer thickness. The higher strength results as higher layer thickness 0.3 mm as compared with 0.1 and 0.2 at 30%fill density.


Author(s):  
Sourabh Tandon ◽  
Ruchin Kacker ◽  
KG Sudhakar

ABS (Acrylonitrile Butadiene Styrene) and PLA (Polylactic acid) are the most commonly used thermoplastic materials in the AM (Additive Manufacturing) to build objects adding layer by layer. Addition of reinforcement such as carbon fibres to these materials is common to enhance strength properties. This work aims the fabrication of ABS, PLA, and PLA+CF specimens using the FDM (Fused Deposition Modeling). Subsequently, the tensile strength of printed specimens at Tri-Hexagon pattern for various % infills with different orientations is investigated. For a desired strength, the analysis facilitates the designer to choose suitable combination of specimen orientation at a specific infill and pattern. PLA+CF and ABS specimens with Tri-hexagon pattern at 0° orientation retain considerable strength when infill % gets lowered, whereas, virgin PLA observes higher strength stability at 90° orientation. The magnitudes of Ultimate tensile strength increased with infill %. The peak strength for PLA+CF specimen (with 100% infill without any pattern) at 0° and 90° orientation was 22% and 5% more, respectively, compared to 45° orientation. SEM images reveal a decrease in strength with ABS and PLA specimens due to the presence of voids between the layers, whereas showed strong bonding between CF and PLA matrix. Tri-Hexagon pattern showed better strength than the honeycomb, line, and rectilinear, especially at lower infills. Specimens both with and without Tri-hexagonal pattern observed superior ductile characteristics at 0° and 90° orientation, whereas most inferior at 45°.


2020 ◽  
Vol 861 ◽  
pp. 182-187
Author(s):  
Vinh Du Nguyen ◽  
Thai Xiem Trinh ◽  
Son Minh Pham ◽  
Trong Huynh Nguyen

Additive manufacturing (3D printing) is a hopeful technique that is used to produce complex geometry parts in a layer-by-layer method. Fused deposition modeling (FDM) is a popular 3D printing technology for producing components of thermoplastic polymers. In FDM process, the part quality is influenced strongly by the printing parameters. Until now, these parameters stil need to be investigated. Therefore, in this study, the influence of FDM 3D printing parameters on the tensile strength of product will be investigated. By experiment, three parameters, that is, layer height, solid layer top, and first-layer height, were studied. The investigation shows that the layer height is the only parameter impacted the tensile strength of the product.


Sign in / Sign up

Export Citation Format

Share Document