Improvement in Tensile Strength of FDM Built Parts by Parametric Control

2014 ◽  
Vol 592-594 ◽  
pp. 1075-1079 ◽  
Author(s):  
Swayam Bikash Mishra ◽  
Siba Sankar Mahapatra

Fused Deposition Modeling (FDM) is one of the efficient rapid prototyping (RP) technologies that forms 3D objects by adding material layer by layer from CAD generated solid models. However, the FDM built part is hardly anisotropic in nature due to layer-by-layer build mechanism. Literature suggests that mechanical property, especially tensile strength, of FDM built part is severely affected by process parameters. Among all the parameters, contour number happens to be an important parameter because it reduces stress concentration resulting in avoidance of premature breakdown. Therefore, in this work contour number along with five important process parameters such as layer thickness, raster width, part orientation, raster angle and air gap are considered and their effect on tensile strength of FDM built parts is studied. Experiments are conducted using Face Centred Central Composite Design (FCCCD) in order to reduce the experimental runs. An optimal parameter setting has been suggested for the maximisation of tensile strength of the FDM built parts.

2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2019 ◽  
Vol 8 (3) ◽  
pp. 7635-7639

Influence of layer thickness nozzle temperature and angle on tensile strength of PLA fabricated with FDM (FFF) was experimentally investigated. Polylactic Acid (PLA) is a semi-crystalline and bio-friendly thermoplastic polymer has identified as important material in different applications due to its mechanical characteristics. Fused Deposition Modeling (FDM) is a one of the proved technology in Fused Filament Fabrication (FFF) technique in additive manufacturing process. In present investigation different specimens were fabricated using FDM technique with different layer height and different layer angles for finding influence of these manufacturing parameters on tensile strength of the specimen. Specimens were fabricated and tested as per ASTM D638 standard. It is clearly observed that tensile strength is more for +450 /-450 layer angle than the +00 /-0 0 layer angle for a given layer height(h=0.10 mm, h=0.15mm and h=0.20mm).The TAGUCHI analysis is carried with nozzle temperature, layer thickness and angle finding optimal values. It has been observed that, the optimal parameter is angle, which is equal to 30 0 .the ANOVA variation of angle layer with tensile strength has been observed that 18.10-31.90.


2022 ◽  
Vol 10 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Shilpesh R. Rajpurohit ◽  
Harshit K. Dave ◽  
Kamlakar P. Rajurkar

The application of Fused Deposition Modeling (FDM) is restricted due to limited information about the mechanical properties of printed parts. Therefore, it is required to determine the mechanical properties of the FDM properties to avail the full benefit of the FDM process. In the present study, Classic Laminate Theory (CLT) has been employed at the different configurations of layer thickness and raster width. The required elastic constant of material for CLT has been experimentally obtained through FDM printed Polylactic Acid (PLA) unidirectional specimens at 0°, 45° and 90° for different combinations of layer height and raster width. For these different combinations of layer height and raster width, constitutive models were developed to predict the tensile properties of the PLA parts. Tensile strength of the FDM printed bi-directional specimens has been experimentally obtained to validate the proposed CLT model results. The experimental tensile strength data is in good agreement with the data predicted by the proposed CLT model. Higher tensile strength and modulus were achieved with 0° raster angle compared to 90° raster angle. In the case of a bi-directional printed specimen, higher tensile strength was obtained with 45°/-45° raster angle followed by 30°/-60° and 0°/90° raster angle.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Debashis Mishra ◽  
Anil Kumar Das

PurposeThe purpose of the experimental investigation was to optimize the process parameters of the fused deposition modeling (FDM) technique. The optimization of the process was performed to identify the relationship between the chosen factors and the tensile strength of acrylonitrile butadiene styrene (ABS) and carbon fiber polylactic acid (PLA) thermoplastic material, FDM printed specimens. The relationship was demonstrated by using the linear experimental model analysis, and a prediction expression was established. The developed prediction expression can be used for the prediction of tensile strength of selected thermoplastic materials at a 95% confidence level.Design/methodology/approachThe Taguchi L9 experimental methodology was used to plan the total number of experiments to be performed. The process parameters were chosen as three at three working levels. The working range of chosen factors was the printing speed (60, 80 and 100mm/min), 40%, 60% and 80% as the infill density and 0.1mm, 0.2mm and 0.3mm as the layer thickness. The fused deposition modeling process parameters were optimized to get the maximum tensile strength in FDM printed ABS and carbon fiber PLA thermoplastic material specimens.FindingsThe optimum condition was achieved by the process optimization, and the desired results were obtained. The maximum desirability was achieved as 0.98 (98%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.3mm. The strength of the ABS specimen was predicted to be 23.83MPa. The observed strength value was 23.66MPa. The maximum desirability was obtained as 1 (100%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.2mm. The strength of the carbon fiber PLA specimen was predicted to be 26.23MPa, and the obtained value was 26.49MPa.Research limitations/implicationsThe research shows the useful process parameters and their suitable working conditions to print the tensile specimens of the ABS and carbon fiber PLA thermoplastics by using the fused deposition modeling technique. The process was optimized to identify the most influential factor, and the desired optimum condition was achieved at which the maximum tensile strength was reported. The produced prediction expression can be used to predict the tensile strength of ABS and carbon fiber PLA filaments.Practical implicationsThe results obtained from the experimental investigation are useful to get an insight into the FDM process and working limits to print the parts by using the ABS and carbon fiber PLA material for various industrial and structural applications.Social implicationsThe results will be useful in choosing the suitable thermoplastic filament for the various prototyping and structural applications. The products that require freedom in design and are difficult to produce by most of the conventional techniques can be produced at low cost and in less time by the fused deposition modeling technique.Originality/valueThe process optimization shows the practical exposures to state an optimum working condition to print the ABS and carbon fiber PLA tensile specimens by using the FDM technique. The carbon fiber PLA shows better strength than ABS thermoplastic material.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2344
Author(s):  
Ruoxiang Gao ◽  
Jun Xie ◽  
Jinghui Yang ◽  
Chaojie Zhuo ◽  
Jianzhong Fu ◽  
...  

As a special engineering polymer, polyether ether ketone (PEEK) has been used widely due to its excellent mechanical properties, high thermal stability, and chemical resistance. Fused deposition modeling (FDM) is a promising process for fabricating PEEK parts. However, due to the semi-crystalline property and high melting point of PEEK, determining appropriate process parameters is important to reduce warpage deformation and improve the mechanical properties of PEEK. In this article, the influence of raster angle and infill density was determined by single factor experiment, which are the two most important parameters. The results showed that samples with 0°/90° raster angle and 50% infill density had the best comprehensive properties in terms of warpage deformation, tensile strength, and specific strength. Subsequently, based on the results above, the effects of printing speed, nozzle temperature, platform temperature, raster width, and layer thickness were analyzed by orthogonal experiment. The results indicated that platform temperature had the greatest impact on warpage deformation while printing speed and nozzle temperature were significant parameters on tensile strength. Through optimization, warpage deformation of the samples could be reduced to almost 0 and tensile strength could increase by 19.6% (from 40.56 to 48.50 MPa). This will support the development of FDM for PEEK.


2011 ◽  
Vol 10 (02) ◽  
pp. 241-259 ◽  
Author(s):  
ANOOP KUMAR SOOD ◽  
VEDANSH CHATURVEDI ◽  
SAURAV DATTA ◽  
SIBA SANKAR MAHAPATRA

Fused deposition modeling (FDM) is a process by which functional parts can be produced rapidly through deposition of fused layers of material according to a numerically defined cross-sectional geometry. Literature suggests that process parameters largely influence on quality characteristics of rapid prototyping (RP) parts. A functional part is subjected to different loading conditions in actual practice. Therefore, process parameters need to be determined in such a way that they collectively optimize more than one response simultaneously. To address this issue, effect of important process parameters viz., layer thickness, orientation, raster angle, raster width, and air gap have been studied. The responses considered in this study are mechanical property of FDM produced parts such as tensile, bending and impact strength. The multiple responses are converted into a single response using principal component analysis (PCA) so that influence of correlation among the responses can be eliminated. Resulting single response is nothing but the weighted sum of three principal components that explain almost hundred percent of variation. The experiments have been conducted in accordance with Taguchi's orthogonal array to reduce the experimental runs. The results indicate that all the factors such as layer thickness, orientation, raster angle, raster width and air gap and interaction between layer thickness and orientation significantly influence the response. Optimum parameter settings have been identified to simultaneously optimize three responses. The mechanism of failure is explained with the help of SEM micrographs.


2016 ◽  
Vol 36 (3) ◽  
pp. 110 ◽  
Author(s):  
Kenny Álvarez ◽  
Rodrigo F. Lagos ◽  
Miguel Aizpun

3D printing is a manufacturing process that is usually used for modeling and prototyping. One of the most popular printing techniques is fused deposition modeling (FDM), which is based on adding melted material layer by layer. Although FDM has several advantages with respect to other manufacturing materials, there are several problems that have to be faced. When setting the printing options, several parameters have to be taken into account, such as temperature, speed, infill percentage, etc. Selecting these parameters is often a great challenge for the user, and is generally solved by experience without considering the influence of variations in the parameters on the mechanical properties of the printed parts.This article analyzes the influence of the infill percentage on the mechanical properties of ABS (Acrylonitrile Butadiene Styrene) printed parts. In order to characterize this influence, test specimens for tensile strength and Charpy tests were printed with a Makerbot Replicator 2X printer, in which the infill percentage was varied but the rest of the printing parameters were kept constant. Three different results were analyzed for these tests: tensile strength, impact resistance, and effective printing time. Results showed that the maximum tensile force (1438N) and tensile stress (34,57MPa) were obtained by using 100% infill. The maximum impact resistance, 1,55J, was also obtained with 100% infill. In terms of effective printing time, results showed that printing with an infill range between 50% and 98% is not recommended, since the effective printing time is higher than with a 100% infill and the tensile strength and impact resistance are smaller. In addition, in comparing the results of our analysis with results from other authors, it can be concluded that the printer type and plastic roll significantly influence the mechanical properties of ABS parts.


Sign in / Sign up

Export Citation Format

Share Document