scholarly journals Efficient Implementation of Multi-View Video Compression for High Performance Application

Author(s):  
Shaik Rahimunnisha ◽  
◽  
Ghanta Sudhavani ◽  
2012 ◽  
Vol 220-223 ◽  
pp. 2445-2449
Author(s):  
Wen Dan Xu ◽  
Xin Quan Lai ◽  
Dong Lai Xu

This paper presents an improved video segmentation scheme, which consists of two stages: initial segmentation and motion estimation. In the initial segmentation, the watershed transformation followed by a region adjacency graph guided region merging process is used to partition the first video frame into spatial homogenous regions. Then the motion of changed region is estimated. Based on the highly efficient quadratic motion model, the motion estimation is undertaken using Gauss-Newton Levenberg-Marquardt method to minimize the least-square error function. Experimental results show the proposed scheme provides high performance in terms of segmentation accuracy and video compression ratio.


2015 ◽  
Vol 21 (6) ◽  
pp. 630-648 ◽  
Author(s):  
Sunil Kumar Tiwari ◽  
Sarang Pande ◽  
Sanat Agrawal ◽  
Santosh M. Bobade

Purpose – The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements. Design/methodology/approach – The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials. Findings – Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts. Originality/value – The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.


Author(s):  
Srinivas Bachu ◽  
N. Ramya Teja

Due to the advancement of multimedia and its requirement of communication over the network, video compression has received much attention among the researchers. One of the popular video codings is scalable video coding, referred to as H.264/AVC standard. The major drawback in the H.264 is that it performs the exhaustive search over the interlayer prediction to gain the best rate-distortion performance. To reduce the computation overhead due to exhaustive search on mode prediction process, this paper presents a new technique for inter prediction mode selection based on the fuzzy holoentropy. This proposed scheme utilizes the pixel values and probabilistic distribution of pixel symbols to decide the mode. The adaptive mode selection is introduced here by analyzing the pixel values of the current block to be coded with those of a motion compensated reference block using fuzzy holoentropy. The adaptively selected mode decision can reduce the computation time without affecting the visual quality of frames. Experimentation of the proposed scheme is evaluated by utilizing five videos, and from the analysis, it is evident that proposed scheme has overall high performance with values of 41.367 dB and 0.992 for PSNR and SSIM respectively.


Author(s):  
Diego Jesus Serrano-Carrasco ◽  
Antonio Jesus Diaz-Honrubia ◽  
Pedro Cuenca

AbstractWith the advent of smartphones and tablets, video traffic on the Internet has increased enormously. With this in mind, in 2013 the High Efficiency Video Coding (HEVC) standard was released with the aim of reducing the bit rate (at the same quality) by 50% with respect to its predecessor. However, new contents with greater resolutions and requirements appear every day, making it necessary to further reduce the bit rate. Perceptual video coding has recently been recognized as a promising approach to achieving high-performance video compression and eye tracking data can be used to create and verify these models. In this paper, we present a new algorithm for the bit rate reduction of screen recorded sequences based on the visual perception of videos. An eye tracking system is used during the recording to locate the fixation point of the viewer. Then, the area around that point is encoded with the base quantization parameter (QP) value, which increases when moving away from it. The results show that up to 31.3% of the bit rate may be saved when compared with the original HEVC-encoded sequence, without a significant impact on the perceived quality.


This work investigates the performance of SiGe Hybrid JunctionLess FinFET (HJLFinFET) on insulator with different mole fraction x. The band gap difference for different mole fractions are explored. Impact of electrical characteristics and SCE of HJLFinFET are analyzed with fin width 10nm and varying gate length from 5nm-40nm for different mole fraction. Synopsys Sentaurus TCAD tool(sprocess and sdevice) are used in Device modelling and device simulation. Simulation results shows improvement in On current, DIBL and SS. For high performance application SiGe with mole fraction less than 0.3 at channel length less than 10nm are suitable because of the bandgap value is similar to silicon.


2018 ◽  
Vol 17 (2) ◽  
pp. 43-50
Author(s):  
Al-Mayhedee Zubair ◽  
Mohammad Abdul Mannan ◽  
Junji Tamura

The environment friendly blessings of Electrical Vehicles (EV), human beings are becoming extra involved in the use of them alternatively than the usage of mechanical differentials. In electrical vehicles distinct sorts of electrical machines are used among them DFIM is used in this work. The challenging work is to design of a controller as the output of the motor has to match with vehicle input. So, far, most of the mentioned works have utilized Proportional-Integral (PI) controllers as the speed control. But, the negative aspects of PI controller are properly known, as its design depends on the specific motor parameters and the overall performance is sensitive to system disturbances. The fundamental goal of this paper is to replace the conventional PI controller by means of an IP controller which is successful of dealing with exceedingly non-linear DFIM motor for high performance application in Electrical Vehicle. The effectiveness of designed IP controller of an electrical differential for an EV system is evaluated through Matlab/Simulink software. In simulation work different road conditions for EV are considered. After the simulation the designed controller is found to be strong for the speed control application of Electrical Vehicle.


Sign in / Sign up

Export Citation Format

Share Document