scholarly journals Analysis of a High Step-Down DC/DC Converter Topology with a Single Inductor

2021 ◽  
Vol 14 (1) ◽  
pp. 552-565
Author(s):  
Kei Eguchi ◽  
◽  
Wanglok Do ◽  
Akira Shibata ◽  
◽  
...  

This paper presents a novel high step-down dc/dc converter topology with a single inductor for 48V data center applications. Distinguished from conventional dc/dc converter topologies with a single inductor, the proposed converter topology is designed by series connecting a step-down cross-connected Fibonacci converter with a buck converter. By combination of these converter modules, the proposed converter topology offers a high voltage gain, viz. 1/48×, without cascade connection. Hence, high power efficiency is provided by the proposed single inductor topology. The characteristics of the proposed converter topology are investigated by theoretical analysis, computer simulations, and experiments. In the given theoretical analysis and the performed simulations, the proposed converter topology demonstrates higher power efficiency than the conventional converter topologies with a single inductor. Furthermore, the validity of the proposed topology is confirmed by the experiments.

Author(s):  
Pavan Prakash Gupta ◽  
G. Indira Kishore ◽  
Ramesh Kumar Tripathi

In the class of the boost converters, the conventional DC–DC boost converters are in common practice but their limited boost capabilities at higher duty ratios are one of the concerns. The isolated and non-isolated step-up DC–DC converters are one of the remedies of the above issue. The presence of switched inductor and switched capacitors in the circuit of non-isolated configuration can provide considerable step-up in voltage at the output, and also facilitate lower voltage stress on components. In this paper, work has been done to propose three non-isolated high-voltage gain DC–DC boost converter topologies. Along with the high voltage gain, the topologies also have lesser voltage stress across the active power switches and diodes used in topologies. The proposed topologies are suitable for low dc input levels like renewable sources, microgrid and grid-connected applications. A Matlab/Simulink 2017a environment is utilized to derive, design and simulate the proposed topologies for a 100-W load operation. The basic topology is also realized in hardware as a prototype circuit with 100-W resistive load, operated at 50[Formula: see text]kHz switching frequency.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shanthi Thangavelu ◽  
Prabha Umapathy

A new topology for high step-up nonisolated DC-DC converter for solar PV applications is presented in this paper. The proposed high-voltage gain converter topology has many advantages like low-voltage stress on the switches, high gain with low duty ratio, and a continuous input current. The analytical waveforms of the proposed converter are presented in continuous and discontinuous modes of operation. Voltage stress analysis is conducted. The voltage gain and efficiency of the converter in presence of parasitic elements are also derived. Performance comparison of the proposed high-gain converter topology with the recently reported high-gain converter topologies is presented. Validation of theoretical analysis is done through the test results obtained from the simulation of the proposed converter. For the maximum duty ratio of 80%, the output voltage of 670 V is observed, and the voltage gain obtained is 14. Comparison of theoretical and simulation results is presented which validates the performance of the proposed converter.


Optics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 25-42
Author(s):  
Ioseph Gurwich ◽  
Yakov Greenberg ◽  
Kobi Harush ◽  
Yarden Tzabari

The present study is aimed at designing anti-reflective (AR) engraving on the input–output surfaces of a rectangular light-guide. We estimate AR efficiency, by the transmittance level in the angular range, determined by the light-guide. Using nano-engraving, we achieve a uniform high transmission over a wide range of wavelengths. In the past, we used smoothed conical pins or indentations on the faces of light-guide crystal as the engraved structure. Here, we widen the class of pins under consideration, following the physical model developed in the previous paper. We analyze the smoothed pyramidal pins with different base shapes. The possible effect of randomization of the pins parameters is also examined. The results obtained demonstrate optimized engraved structure with parameters depending on the required spectral range and facet format. The predicted level of transmittance is close to 99%, and its flatness (estimated by the standard deviation) in the required wavelengths range is 0.2%. The theoretical analysis and numerical calculations indicate that the obtained results demonstrate the best transmission (reflection) we can expect for a facet with the given shape and size for the required spectral band. The approach is equally useful for any other form and of the facet. We also discuss a simple way of comparing experimental and theoretical results for a light-guide with the designed input and output features. In this study, as well as in our previous work, we restrict ourselves to rectangular facets. We also consider the limitations on maximal transmission produced by the size and shape of the light-guide facets. The theoretical analysis is performed for an infinite structure and serves as an upper bound on the transmittance for smaller-size apertures.


Author(s):  
Olga Shcherbakova ◽  
Anna Tatarinceva

The levels of conflictological culture of pedagogues and engineers, the peculiarities of its formation as well as the comparison of the conflictological culture’s levels among representatives of these specialties on the base of their gender and work experience are analyzed in the proposed research. Each specialist owns a certain level of the conflictological culture’s development and he/she expresses it in a professional environment. The relevance of the research’s theme is caused by the necessity to improve conflictological culture of specialists for their further successful activities. The Aim of the research is the identification of differences in the levels’ formation of specialists’ conflictological culture by the example of pedagogues and engineers and the influence of such a characteristic as a gender and work experience  on it. The Object of the research is the process of forming conflictological culture of pedagogues and engineers. The Methods of the research are the following:1. the theoretical analysis of scientific literature on the given problem;2.the empirical analysis of obtained data reflected the level’s formation of pedagogues and engineers. 


2020 ◽  
Author(s):  
Angelica Paula Caus ◽  
Guilherme Martins Leandro ◽  
Ivo Barbi

This paper presents a new power converter topology<br>generated by the integration of the asymmetrical ZVS-PWM dcdc converter with a switched-capacitor ladder-type commutation<br>cell. Circuit operation and theoretical analysis with emphasis on<br>the soft-commutation process are included in the paper. The<br>main advantage of the proposed converter with respect to the<br>conventional asymmetrical half-bridge dc-dc converter is the<br>reduction of the voltage stress across the power switches to the<br>half of the input dc bus voltage, enabling the utilization of lower<br>voltage rating components. Experiments conducted on a<br>laboratory prototype with 1.4 kW power-rating, 800 V input<br>voltage, 48 V output voltage and 100 kHz switching frequency<br>are included, to verify the theoretical analysis and the design<br>methodology. The maximum efficiency of the experimental nonoptimized prototype was 93.6%.<br>Index Terms - Asymmetrical dc-dc converter, pulse-widthmodulation, switched-capacitor, zero voltage switching.<div><br><br></div>


Author(s):  
Mohammad Rustam M. L. ◽  
F. Danang Wijaya

Under various external conditions, grid connected PV system performance is strongly affected by the topology that is used to connect a PV system with grid. This research aims to design a multistring based converter topology for three-phase grid connected 200 kW PV system that has a high performance in various operating conditions. Research was done by a simulation method using Matlab-Simulink with performance being evaluated including the generated power, efficiency, power quality in accordance with grid requirements, as well as the power flow. In the simulation, multistring converter topology was designed using two dc-dc boost multistring converters connected in parallel to a centralized of three-phase three-level NPC inverter with the size of the string being shorter and more parallel strings as well as the maximum voltage of the PV array of 273.5 V close to dc voltage reference of 500 V. Each dc-dc boost multistring converter have individual MPPT controllers. The simulation results showed that this multistring converter topology had a high performance in various operating conditions. This due to more power generated by the NPC inverter (> 190 kW) at the time of high power generation on the STC conditions (1000 W/m2, 25 oC), the lowest efficiency of the total system is 95.08 % and the highest efficiency of the total system is 99.4 %, the quality of the power generated in accordance with the requirements of grid, as well as the inverter put more active power to the grid and less reactive power to the grid. The response of the inverter slightly worse for loads with greater reactive power and unbalanced.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1131 ◽  
Author(s):  
Mauricio Dalla Vecchia ◽  
Giel Van den Broeck ◽  
Simon Ravyts ◽  
Johan Driesen

This paper explores and presents the application of the Inductor–Diode and Inductor-Capacitor-Diode structures in a DC–DC step-down configuration for systems that require voltage adjustments. DC micro/picogrids are becoming more popular nowadays and the study of power electronics converters to supply the load demand in different voltage levels is required. Multiple strategies to step-down voltages are proposed based on different approaches, e.g., high-frequency transformer and voltage multiplier/divider cells. The key question that motivates the research is the investigation of the aforementioned Inductor–Diode and Inductor–Capacitor–Diode, current multiplier/divider cells, in a step-down application. The two-stage buck converter is used as a study case to achieve the output voltage required. To extend the intermediate voltage level flexibility in the two-stage buck converter, a second switch was implemented replacing a diode, which gives an extra degree-of-freedom for the topology. Based on this modification, three regions of operation are theoretically defined, depending on the operational duty cycles δ2 and δ1 of switches S2 and S1. The intermediate and output voltage levels are defined based on the choice of the region of operation and are mapped herein, summarizing the possible voltage levels achieved by each configuration. The paper presents the theoretical analysis, simulation, implementation and experimental validation of a converter with the following specifications; 48 V/12 V input-to-output voltage, different intermediate voltage levels, 100 W power rating, and switching frequency of 300 kHz. Comparisons between mathematical, simulation, and experimental results are made with the objective of validating the statements herein introduced.


Sign in / Sign up

Export Citation Format

Share Document