scholarly journals Unmanned Helicopter Type Aircraft for the Pesticides and Fertilizers Application

2020 ◽  
Vol 14 (1) ◽  
pp. 61-68
Author(s):  
L. A. Marchenko ◽  
M. V. Myzin ◽  
I. V. Kuznetsov ◽  
T. V. Mochkova ◽  
A. Yu. Spiridonov

Digital agricultural production is based on robotic agricultural technologies for the use of pesticides and fertilizers using unmanned aerial systems, which are based on unmanned aerial vehicles for monitoring agricultural land, the pesticides application, fertilizers and other agrochemicals. (Research purpose) To develop an unmanned helicopter based aircraft for applying pesticides and fertilizers, and to substantiate its technological parameters. (Materials and methods) The authors used methodological recommendations on the use of chemicals in the precision farming system, regulatory and technical documentation for unmanned aircraft systems. (Results and discussion) The authors determined the unmanned aerial vehicle main flight technical and technological parameters for the implementation of the applying pesticides and fertilizers process. They established the dependences of its productivity on the norms of introducing working fluids of pesticides and fertilizers, the agricultural field length, and the approach distance to the field. (Conclusions) The authors developed a helicopter-type unmanned aerial vehicle of a coaxial design with a take-off mass of 280 kilograms and a payload of 50-80 kilograms, a rotor diameter of 5.3 meters, a constructive boom width with sprayers of 5 meters, a working flight height of 1-5 meters, a working speed of 40-60 kilometers per hour, the rate of working fluid of pesticides application 10-20 liters per hectare and nitrogen fertilizers 30-120 liters per hectare. They established rational values for the application rates of pesticides – 10-20 liters per hectare, the agricultural field length – at least 0.8 kilometers, ensuring maximum productivity in flight hour when processing the agricultural field. They showed that the flight distance minimizing from the runway to the field significantly increased the productivity of applying pesticides and fertilizers.

Author(s):  
A.N. Grigor’ev ◽  
E.A. Dudin ◽  
V.Yu. Ryabchevskiy ◽  
N.V. Maseev

The presented research was performed to develop a scientific and methodological apparatus for estimation of aerial survey effectiveness. The work takes into account the parameters of the unmanned aerial vehicle, of the optoelectronic onboard special complex and the spatial properties of the areal object. The result of the research of works in the field of aerial survey using unmanned aerial systems is presented. It is revealed that the analysis and synthesis of specific sets of unmanned aerial vehicles with onboard special complexes is carried out in a qualitative way according to individual technical parameters. At the same time, aggregate indicators characterizing aerial survey effectiveness are not evaluated. Models of an unmanned aerial vehicle, special airborne complex, areal object and requirements for the quality of survey materials are proposed. The assumptions under which the modeling of aerial survey of the areal object is performed are determined. On the basis of models the procedures of analysis and synthesis of aerial survey system are developed. The content of the procedures takes into account the loss of the survey resource that occurs due to the remoteness of the object and making approaches to the next shooting route in tack flight mode. The procedures allow to determine the potential effectiveness of the survey and to choose the configuration of the onboard special complex to ensure optimal performance of the survey of the areal object. The results of a computational experiment on the example of a conditionally real light high-altitude unmanned aerial vehicle are presented. The dependence of the effectiveness of aerial photography on the remoteness and spatial properties of the areal object is presented. For different conditions, the configuration of the onboard special complex, which provide optimal multi-route shooting, is determined.


2021 ◽  
Vol 93 ◽  
pp. 01013
Author(s):  
Artyom Spiridonov

In this article the authors provide an economic assessment of the technology of using unmanned aircraft systems in digital agriculture and justify the optimal requirements for its main technological parameters. As a measure of comparative evaluation of various options for implementing the system, an estimate of the cost of performing the technological process of using pesticides, fertilizers and other agrochemicals in conditional price units is proposed. A multi-factor experiment was carried out and variants of a mathematical model describing the relationship between agrotechnological factors and the final resultant, expressed in the conditional cost of processing 1 Ha of agricultural land, were obtained. The optimal values of the parameters are obtained for various variants of fixing factors at the specified levels. The influence of the most significant agrotechnological factors on the cost of the technological process of using pesticides, fertilizers and other agrochemicals is shown. The values of factors that should be used in the development of new types of unmanned aerial vehicles to ensure their maximum demand in agriculture and economic efficiency are proposed.


Author(s):  
Vladimir M. Bure ◽  
◽  
Evgenii P. Mitrofanov ◽  
Olga A. Mitrofanova ◽  
Aleksei F. Petrushin ◽  
...  

2021 ◽  
pp. 50-58
Author(s):  
Michael Yu. Kataev ◽  
Maria M. Dadonova ◽  
Dmitry S. Efremenko

The goal of this research was to study and optimize multi-temporal RGB images obtained by a UAV (unmanned aerial vehicle). A digital camera onboard the UAV allows obtaining data with a high temporal and spatial resolution of ground objects. In the case considered by us, the object of study is agricultural fields, for which, based on numerous images covering the agricultural field, image mosaics (orthomosaics) are constructed. The acquisition time for each orthomosaic takes at least several hours, which imposes a change in the illuminance of each image, when considered separately. Orthomosaics obtained in different periods of the year (several months) will also differ from each other in terms of illuminance. For a comparative analysis of different parts of the field (orthomosaic), obtained in the same time interval or comparison of areas for different periods of time, their alignment by illumination is required. Currently, the majority of alignment approaches rely rather on colour (RGB) methods, which cannot guarantee finding efficient solutions, especially when it is necessary to obtain a quantitative result. In the paper, a new method is proposed that takes into account the change in illuminance during the acquisition of each image. The general formulation of the problem of light correction of RGB images in terms of assessing the colour vegetation index Greenness is considered. The results of processing real measurements are presented.


Author(s):  
N V Abramov ◽  
S A Semizorov ◽  
S V Sherstobitov ◽  
M V Gunger ◽  
D A Petukhov

2020 ◽  
Vol 8 (3) ◽  
pp. 224-244
Author(s):  
Lucas Moreira Furlan ◽  
Vania Rosolen ◽  
Jepherson Salles ◽  
César Augusto Moreira ◽  
Manuel Eduardo Ferreira ◽  
...  

Human pressure on the water resources provided by natural isolated wetlands has intensified in Brazil due to an increase in agricultural land equipped with irrigation. However, the amount of water stored in these areas and its contribution to aquifer recharge is unknown. This study aimed to quantify the amount of water that can be retained in a natural wetland and to propose a model of groundwater recharge. We used remote sensing techniques involving unmanned aerial vehicle to map the wetland and highlight its internal morphology, using a red–green–blue orthomosaic and a digital surface model. The 2-D inversion and a pseudo-3-D model from electrical resistivity tomography data were used to visualize the subsurface structures and hydrologic flow paths. The wetland is a reservoir storing up to 416.996 m3 of water during the rainy months. Distinct internal compartments characterize the wetland topography and different water-volume storage, lower in the border and higher in the center. A leakage point connects surface water to groundwater through direct vertical flow, which constitutes the aquifer recharge zone. Remotely sensed very high-resolution images allied with geophysical techniques allowed complete surface and subsurface imaging and offered visual tools that contributed to understanding the hydrodynamics of the wetland.


2018 ◽  
Vol 92 (3) ◽  
pp. 318-328
Author(s):  
Marcin Chodnicki ◽  
Katarzyna Bartnik ◽  
Miroslaw Nowakowski ◽  
Grzegorz Kowaleczko

Purpose The motivation to perform research on feedback control system for unmanned aerial vehicles, a fact that each quadrocopter is unstable. Design/methodology/approach For this reason, it is necessary to design a control system which is capable of making unmanned aerial vehicle vertical take-off and landing (UAV VTOL) stable and controllable. For this purpose, it was decided to use a feedback control system with cascaded PID controller. The main reason for using it was that PID controllers are simple to implement and do not use much hardware resources. Moreover, cascaded control systems allow to control object response using more parameters than in a standard PID control. STM32 microcontrollers were used to make a real control system. The rapid prototyping using Embedded Coder Toolbox, FreeRTOS and STM32 CubeMX was conducted to design the algorithm of the feedback control system with cascaded PID controller for unmanned aerial vehicle vertical take-off and landings (UAV VTOLs). Findings During research, an algorithm of UAV VTOL control using the feedback control system with cascaded PID controller was designed. Tests were performed for the designed algorithm in the model simulation in Matlab/Simulink and in the real conditions. Originality/value It has been proved that an additional control loop must have a full PID controller. Moreover, a new library is presented for STM32 microcontrollers made using the Embedded Coder Toolbox just for the research. This library enabled to use rapid prototyping while developing the control algorithms.


2012 ◽  
Vol 225 ◽  
pp. 555-560
Author(s):  
Javaan Chahl

Much of aerospace academia is anticipating a boom in Unmanned Aerial Vehicle (UAV) funding and research opportunities. The expectation is built on the premise that UAVs will revolutionize aerospace, which is likely based on current trends. There is also an anticipation of an increasing number of new platforms and research investment, which is likely but must be analyzed carefully to determine where the opportunities might lie. This paper draws on the state of industry and a systems engineering approach. We explore what aspects of UAVs really are the results of aerospace science advances and what aspects will be rather more mundane works of engineering.


2018 ◽  
Vol 161 ◽  
pp. 03021 ◽  
Author(s):  
Vinh Nguyen ◽  
Oksana Solenaya ◽  
Petr Smirnov

Adding an onboard manipulation system to an unmanned aerial vehicle (UAV) significantly complicates framework, functioning algorithms, and leads to an increase in overall dimensions. The physical interaction of the manipulator with objects influences to unstabilization of UAV, which in turn leads to difficulties in positioning the UAV and reduces the accuracy of gripper motion. In addition, the physical interaction of the manipulator with objects requires increased power resources of UAVs. The article analyzes modern research of UAVs with a manipulator, including flight control problems, avoidance of contact with the earth, surrounding space, as well as manipulations with the captured object. On the basis of the analysis, a list of new problems arising in the physical interaction of UAVs with objects through an embedded manipulator is formulated.


Author(s):  
O. M. Pereguda ◽  
A. V. Rodionov ◽  
S. P. Samoilyk

The article proposes an approach to increasing the survivability of class I unmanned aerial vehicles in emergency operations which involves development of an onboard information system for identifying emergency occasions in flight and the synthesis of a control action on the unmanned aircraft in case of hazardous factors influence. As the result of the analysis of the main trends in the development of unmanned aerial vehicles onboard control systems, it was found that the leading countries are paying significant attention to increasing their intellectualization level. This is necessary to ensure the fulfilment of complex tasks that are assigned to modern unmanned aerial vehicles in the military and civilian spheres. The main directions of such researches are identifying the problem of swarm application of unmanned aerial vehicles and expanding the capabilities of onboard control systems maintain automatically the values of certain parameters when the flight conditions changes. As the approach to increasing the survivability of a class I unmanned aerial vehicle, a vision of an onboard information system for identifying emergency occasions in flight and synthesis of control action is proposed, the functional purpose of its components is described. It is suggested that this system will be comprised of a subsystem for identifying emergency cases in flight and determining the class I unmanned aerial vehicle threat level and a subsystem for synthesizing control action. Governing documents and regulations for the state aviation of Ukraine determines the list of aircraft emergency occasions. Article mentions the necessity of detailing emergency occasions in flight, which are typical for class I unmanned aerial vehicles and an approach to their classification is proposed. A vision of the nearest partial scientific tasks and a list of expected scientific results of research in this direction are given.


Sign in / Sign up

Export Citation Format

Share Document