Final plasma hardening the details of peristaltic pumps

Author(s):  
Pavel A. Topolyanskiy ◽  
Sergey A. Ermakov ◽  
Andrey P. Topolyanskiy

Improving the reliability and durability of peristaltic pumps is urgent. (Research purpose) The research purpose is to consider the operating conditions of peristaltic pump saddle, determine the causes of wear, develop a methodology for selecting the optimal coating, conduct research on the physical and mechanical properties of coatings and test them for microabrasive wear. (Materials and methods) The process of finishing plasma hardening with diamond-like DLCPateks coating was chosen for research based on the analysis of well-known industrial coating technologies. The article describes the studied physical and mechanical properties using the nanoindentation method on the TI 750Ubi nanohardness tester (Hysitron, USA) and conducted tests under microabrasive wear conditions on the Tribotester 103PC device to analyze the effectiveness of using this coating in comparison with other wear-resistant coatings. (Results and discussion) It was found by studying the physical and mechanical properties of the DLCPateks coating with a thickness of about 1 micrometer applied by the final plasma hardening method that its wear resistance parameters are: the plasticity index is 0.14-0.16, the plastic deformation resistance is 0.41-0.57. It was noted that the closest analog according to these characteristics is a diamond-like a-C:H coating, applied by the method of physical deposition of coatings in a vacuum, has a value of the plasticity index of 0.1-0.16. (Conclusions) The article describes the result of testing under microabrasive wear conditions, the coefficient of wear resistance of the DLCPateks coating. The results of studies of the physical and mechanical properties of the DLCPateks coating applied by the final plasma hardening method have shown its effectiveness in improving the reliability of peristaltic pump saddles.

2021 ◽  
Vol 1 (142) ◽  
pp. 154-161
Author(s):  
Alexander Kostyukov ◽  

At repair enterprises, various metal-polymer materials are used to restore the interfaces. Metal-polymer materials can be filled with the following components: steel, bronze, aluminum, titanium. The main advantages of metal polymers are their resistance to negative environmental influences, mechanical friction and high temperatures. (Research purpose) The research purpose is in analyzing the possibilities of metal-polymer materials for effective use in the restoration of machine parts and to give suggestions for improving their physical and mechanical properties during the restoration work. (Materials and methods) Authors studied metal-polymer materials of well-known companies: "Belzona" (USA), "Durmetal" (Switzerland), "Diamant" (Germany), "Loctite" (USA), Chester Molecular (Poland). The article presents the data on their use in the restoration of various parts. The metal polymer materials of foreign companies are characterized by stable quality and high physical and technical characteristics; domestic materials are still inferior to imported ones due to the low quality of the incoming components. (Results and discussion) The main property of coatings is the adhesive strength, which largely determines the resource of the restored part. The main factors that affect the adhesive strength are described in the article. It is possible to significantly increase the adhesive strength of the coatings due to the preliminary electric spark treatment of the worn part. The article presents data on the effectiveness of electric spark coatings as an independent technological process in the restoration of the part. The use of a combined technology of electric spark processing with subsequent application of metal-polymer materials provides undeniable advantages in the restoration of parts. (Conclusions) To improve the physical and mechanical properties of coatings, it is advisable to combine the technology of electric spark processing with the use of metal-polymer coatings. This will expand the possibilities of using part recovery technologies.


2021 ◽  
Vol 1 (142) ◽  
pp. 154-161
Author(s):  
Alexander Yu. Kostyukov ◽  

At repair enterprises, various metal-polymer materials are used to restore the interfaces. Metal-polymer materials can be filled with the following components: steel, bronze, aluminum, titanium. The main advantages of metal polymers are their resistance to negative environmental influences, mechanical friction and high temperatures. (Research purpose) The research purpose is in analyzing the possibilities of metal-polymer materials for effective use in the restoration of machine parts and to give suggestions for improving their physical and mechanical properties during the restoration work. (Materials and methods) Authors studied metal-polymer materials of well-known companies: "Belzona" (USA), "Durmetal" (Switzerland), "Diamant" (Germany), "Loctite" (USA), Chester Molecular (Poland). The article presents the data on their use in the restoration of various parts. The metal polymer materials of foreign companies are characterized by stable quality and high physical and technical characteristics; domestic materials are still inferior to imported ones due to the low quality of the incoming components. (Results and discussion) The main property of coatings is the adhesive strength, which largely determines the resource of the restored part. The main factors that affect the adhesive strength are described in the article. It is possible to significantly increase the adhesive strength of the coatings due to the preliminary electric spark treatment of the worn part. The article presents data on the effectiveness of electric spark coatings as an independent technological process in the restoration of the part. The use of a combined technology of electric spark processing with subsequent application of metal-polymer materials provides undeniable advantages in the restoration of parts. (Conclusions) To improve the physical and mechanical properties of coatings, it is advisable to combine the technology of electric spark processing with the use of metal-polymer coatings. This will expand the possibilities of using part recovery technologies.


2020 ◽  
Vol 86 (4) ◽  
pp. 56-60
Author(s):  
A. T. Kanaev ◽  
Z. M. Ramazanova ◽  
S. K. Biizhanov

The necessity and possibility of using nanoindentation in studying the physical and mechanical properties of plasma-hardened wheel steel are considered. The goal of the study is demonstration and substantiation of significant differences in the mechanical properties and behavior of the materials in nanoscale tests from those determined in traditional macroscopic tests. The method was implemented using a NanoHardnessTecter nanohardness tester. The electric field formed in the nanoscale hardness tester pressed on the indenter and the diamond tip of the indenter is immersed in the surface layer of the material under study. The characteristics of the surface layer are determined using the developed software. Knowledge of the physicomechanical characteristics of the material (hardness, Young’s modulus, elastic recovery, etc.) which affect the wear resistance of the surface layers, allows one to evaluate and select the optimal surface modification technology using plasma hardening. The credibility of determination depends on the parameters of measuring equipment and compliance with the requirements to the depth of the imprint depending on the thickness of the hardened layer. The studies were carried out on the samples cut from the rim and crest of a railway wheel subjected to surface plasma hardening on a UPNN-170 installation (Russia). It is shown that the hardness (according to Vickers HV and H) of the rim is greater, and Young’s modulus, on the contrary, is less than the corresponding characteristics of the crest. Moreover, the wear resistance of hardened structural steel increases after nanostructural friction treatment.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 846-849
Author(s):  
Elżbieta Bączek

Metal matrix composites were prepared by hot pressing (HP) and spark plasma sintering (SPS) techniques. Ball-milled ironbase powders were consolidated to near full density by these methods at 900°C. The physical and mechanical properties of the resulting composites were investigated. The specimens were tested for resistance to both 3-body and 2-body abrasion. The composites obtained by HP method (at 900°C/35 MPa) had higher density, hardness and resistance to abrasion than those obtained by SPS method.


2012 ◽  
Vol 503-504 ◽  
pp. 74-77
Author(s):  
Nan Hu ◽  
Xian Jun Li ◽  
Yi Qiang Wu ◽  
Xin Gong Li ◽  
Zhi Cheng Xue

In this paper, the new bamboo-based consolidated composite floors were fabricated with thin bamboo veneers which used as decoration layers, wear resistant layers, high density fiberboards and equilibrium layers through assembling and scuffing. The effect rules of the composite floor on properties were preliminarily studied by three factors: hot-pressing temperature, pressure and time. The results showed that the wear resistance and surface bond strength of the thin bamboo veneer consolidated composite floor significantly increased with the rise of hot-pressing temperature. In the scope of resources, the effect of hot-pressing pressure and time on properties of the floor is not significant. The optimizing technology is hot-pressing temperature 170°C, pressure 3MPa and time 40s/mm in this study. The thin bamboo veneer consolidated composite floor is an excellent floor decorative material, which has good physical and mechanical properties.


2005 ◽  
Vol 297-300 ◽  
pp. 2813-2818 ◽  
Author(s):  
Xun Cai ◽  
Xiaoyu Yang ◽  
Tao Zhao ◽  
Liuhe Li ◽  
Qiu Long Chen

The mixture of Ni based alloy powder and WC particles were used as a feeding material to modify the surface properties of cast Al-Si alloy using a CO2 continuous transverse flow laser beam with maximum power of 10 kW. Microstructures and chemical components of the laser surface cladding (LSC) layers were studied using SEM, XRD, TEM and EDS. It is shown that the LSC layers were composed of γ-( Ni, Cr, Fe, W)matrix phase and many enhancing phases, such as Ni2Al3, Ni3Al, WC, W2C, Cr2B, etc.. The microstructure of the LSC layers was greatly affected by the scanning rate b V and the powder of feeding rate p m under the same laser power. With the increasing of b V and p m , the dissolution phenomenon of WC particles was improved; the length, the diameter and the amount of the acicular constituent were markedly reduced. Microhardness and wear resistance tests were also performed: the average microhardness of the LSC layers was around 5.1 to 5.9GPa, which was five times higher than that of the Al-Si substrate. The wear resistance of the layer was about 20 times as big as that of cast Al-Si alloy when P=6kW, b V =13.3mm s-1, p m =100mg s-1, L=500N. The results showed that the mechanical properties of LSC layers on cast Al-Si alloy can be markedly enhanced with proper processing parameters. However, due to the sudden change of physical and mechanical properties between laser modified layer and substrate, some defects, especially crack, actually occur in the surface modified layer and the interface zone. And finally Ni/WC surface gradient layer was obtained on cast Al-Si alloy through thrice laser scanning technique. The microhardness of the laser gradient layer gradually changed from surface to substrate, so that it can reduce stress concentration in the whole laser surface layer, especially in the interface zone.


2017 ◽  
Vol 907 ◽  
pp. 3-7
Author(s):  
Hülya Akkan ◽  
Mehmet Şi̇mşi̇r ◽  
Kerim Emre Öksüz

NiTi shape memory alloys have attracted significant interest due to their unique superelasticity and high damping performance. In this work, the effect of SiC particle size on both physical and mechanical properties of NiTi matrix composite was investigated. Ni and Ti powders with particle sizes of 40 µm were used with the SiC addition with varying particle sizes of 20 µm and 40 µm, respectively. Composites of NiTi with 1wt. % SiC were fabricated by powder metallurgy technique. The effects of SiCp addition on hardness, relative density and wear behavior of NiTi composites have been investigated. The samples were examined by scanning electron microscope, for microstructural studies and phase development. The results showed that the distribution of the reinforced particle was uniform. Moreover, as the SiC particle size decreases, hardness and wear resistance increase. It was demonstrated that SiC particle size significantly enhanced the wear resistance of NiTi composite.


Sign in / Sign up

Export Citation Format

Share Document