Improving the efficiency of hardening of tillage machine working bodies by arc surfacing using wear-resistant rollers

Author(s):  
Dmitriy B. Slinko ◽  
Vyacheslav A. Denisov ◽  
Dmitriy A. Dobrin ◽  
Andrey V. Afanas’yev ◽  
Pavel M. Kislov

Reducing operating costs during soil processing and increasing the wear resistance of parts and components is an important condition for reducing the cost of agricultural products, increasing its efficiency and competitiveness. The development of materials with increased wear resistance and new effective technologies for strengthening working bodies in their manufacture is now becoming an urgent task. (Research purpose) The research purpose is increasing the wear resistance of the working bodies of soil-processing machines by electric arc surfacing. (Materials and methods) During the experimental study, it has been performed testing of modes and surfacing of a pilot batch of working bodies from Kverneland for field tests in VIM on an automated installation for electric arc surfacing. Authors used eutectic CastolinEnDotec DO*30 powder wire with a diameter of 1.2 millimeters and a boron content of up to 4 percent for surfacing wear-resistant rollers, which allows to obtain wear-resistant rollers with a hardness of up to 65 HRC without pores and cracks. (Results and discussion) It has been revealed that hardened ploughshares that have passed field tests are subject to lower wear rates compared to non-hardened ones. It was found that when operating time is 24.785 hectares per ploughshare, the wear of the linear size of the cutting edge along the width of hardened ploughshares is on average up to 10-11 millimeters less than that of non-hardened ones. It was found that when processing 228 hectares, the wear of the linear size of the cutting edge along the width of hardened bits is on average up to 9-10 millimeters less than that of non-hardened ones. (Conclusions) The technology of surfacing with intermittent wear-resistant rollers provides an increase in the efficiency of hardening of Kverneland working bodies according to the criterion of wear resistance by an average of 20-30 percent. The adjusted technological parameters of the surfacing process will reduce the wear rate and increase the service life of the blade part of the working bodies, as well as reduce the amount of surfaced material by an average of 60 percent. The continuation of work on strengthening the working bodies should be aimed at changing the surfacing scheme and choosing a cheaper domestic cored wire.

2021 ◽  
Vol 31 (4) ◽  
pp. 544-558
Author(s):  
Sergey S. Gryadunov ◽  
Vladimir V. Sivakov

Introduction. For surface tillage operation there widely used disc harrows, working bodies of which are discs wearing out during operation. The wear intensity of discs depends on the wear resistance of their working surfaces, working modes and properties of the cultivated soil. It has been found that an effective way to increase the life of discs is surfacing them with wear-resistant materials. The aim of the work is to study the wear out of surfacing materials, which can be used to harden discs and to make recommendation for the use of these materials in the repair departments of agricultural enterprises. Materials and Methods. Surfacing with electrodes T-590 and powder wires PP-Np200Kh15S1GRT, VELTEK-N560.02 and PP-Np280Kh9F7SG4 were taken as test materials. For wear tests of materials in abrasive mass, there was used an apparatus to simulate the moisture content and composition (sandy loam or loam) of the soil. In the disk-pad tests, the effect of abrasive particle size, load and sliding friction velocity on the wear of the materials was studied. In field tests, wear of the disks made of 65G steel, surfaced toothed and solid disks were monitored. Results. Laboratory studies of the materials revealed the effect of soil moisture and composition, load, abrasive grit and sliding friction velocity on wear. The main factor determining the wear resistance of materials is their structural state. The indexes of wear resistance of surfacing were determined during the laboratory tests and confirmed by field tests. Discussion and Conclusion. Surfacing with flux-cored wire PP-Np280Kh9F7SG4 has the highest wear resistance of the studied materials. The technology of hard-facing disks with modern materials, in particular with flux-cored wire PP-Np280Kh9F7SG4, can be implemented in repair departments of agricultural enterprises when they have the equipment for hard-facing and sharpening of working surfaces.


2020 ◽  
Vol 4 (141) ◽  
pp. 123-131
Author(s):  
IL’YA ROMANOV ◽  

The development of energy and resource-saving methods and technologies for strengthening and restoring the working bodies of agricultural machinery will increase their abrasive wear resistance and durability by using materials from machine-building waste and reduce the cost by 10-30 percent without reducing operational characteristics. (Research purpose) The research purpose is in increasing the abrasive wear resistance and durability of cultivator legs by surfacing powder materials obtained by electroerosive dispersion from solid alloy waste by high-frequency currents. (Materials and methods) Authors obtained a powder for research on their own experimental installations of the CCP "Nano-Center" of electroerosive dispersion from waste of sintered hard alloys of the T15K6 brand. The microhardness of powders and coatings on microshifts was measured using the PMT-3 device, and the hardness of coatings with the KMT-1 microhardometer was measured using the Rockwell method according to GOST 9013-59. The microwave-40AV installation was used to assess the wear resistance of materials of working bodies of tillage machines. (Results and discussion) In the course of laboratory wear tests the relative wear resistance of samples hardened by high-frequency surfacing currents significantly exceeds the wear resistance of non-hardened samples made OF 65g steel, accepted as the reference standard. (Conclusions) Based on the results of experimental studies, the article proposes a new resource-saving technological process for strengthening the working bodies of agricultural machinery through the use of materials from machine-building waste, which allows increasing the abrasive wear resistance of working bodies by 1.5-2 times due to the use of tungsten-containing materials.


2015 ◽  
Vol 761 ◽  
pp. 298-302
Author(s):  
N.I.S. Hussein ◽  
S.R. Kamarul ◽  
Mohamad Nizam Ayof

The wear on the cutting edge of the gray cast iron trim cutter die will result in the burr formation on the trimmed blanks. This will increase the rejection rate, and hence, decreasing the efficiency of the production. By applying a wear resistant material, the wear rate on the cutting edge of the die is believed to be minimized. In this paper, the methodology of the experiment on the cladding process using gas metal arc as the heat source, and NiCrBSi-WC as the filler material on gray cast iron substrate is presented. NiCrBSi-WC is chosen as the filler material because of its outstanding wear resistance characteristic. Furthermore, it is a popular choice as a wear resistant material in various types of industry. The purpose of the planned experiment is to maximize the wear resistance of the trim cutting die. It is also a fraction of the case study based on the parts production in the automotive industry in Malaysia.


2021 ◽  
Vol 11 (21) ◽  
pp. 10236
Author(s):  
Lingfeng Xu ◽  
Zhanhua Song ◽  
Mingxiang Li ◽  
Fade Li ◽  
Jing Guo ◽  
...  

The working environment of agricultural cutting tools is poor, and the operational quality and efficiency are reduced after they become blunt. This study aimed to develop a high wear-resistant agriculture knife with a long life. A Ni–WC alloy, wear-resistant layer was prepared using laser cladding technology on one side of the cutting edge of a 65 Mn silage knife. A self-grinding edge was formed when the cladded knife was used, which improved the cutting quality and service life of the knife. The microstructure, phase, composition, and hardness distribution of the cladding layer were detected and analyzed. The impact toughness and wear resistance of the laser-cladded samples were analyzed, and the cladded knife was tested in the field. The results show that a cladded layer with a dense microstructure formed metallurgical bonds with the substrate. The microhardness was uniform across the cladded layer, and the average hardness of the micro Vickers was approximately 1000 HV(0.2), which was approximately three times the hardness of the substrate. The impact toughness and wear resistance of the coated knife were obviously higher than those of uncoated knives. The field tests showed that compared with a conventional 65 Mn knife, the self-grinding knife with laser cladding could maintain its sharp cutting shape after operation for 76 h, which greatly extended the service life of the knife. This study improved the service life of an agricultural cutting tool, which enhanced the cutting performance and efficiency at the same time.


2021 ◽  
Vol 100 (2) ◽  
pp. 41-49
Author(s):  
M. Stechyshyn ◽  
A. Kornienko ◽  
N. Stechyshyna ◽  
A. Martynyuk ◽  
M. Tsepeniuk ◽  
...  

The task of this work is to find the optimal ratio between the size of the particles of silicon carbide and their volumetric content in the nickel matrix to provide maximum characteristics of strength and wear resistance of the working bodies of soil-processing machines. The article investigates the processes of forming complex electrolytic coatings (CEC) on a nickel basis with particles of the filler of various sizes of silicon carbide (SIC). It has been established that the formation of a sicle size sicle and SiC5 is carried out on a vertical, and all other particles in a horizontal cathode. The volumetric content of SICnano and SiC5 particles in nickel reaches a maximum of about 10%, and SiC100 – 46 %. Cap with particle size 28/20 and 50/40 μm allow you to get the most wear-resistant coatings. In this case, the coating with particles 28/20 μm have higher wear resistance, but coating with particles 50/40 μm are more technological when they are formed. The size of the filler particles has a significant effect on the tribological characteristics of the CEP, namely wear resistance and friction coefficient. It has been established that the highest wear resistance and the smallest friction coefficients are characterized by coatings having as a filler of fractions 28/20 and 50/40 μm. Tribological studies show the promise and efficiency of the CEP to increase the wear resistance of the working bodies of soil-cultivating machines.


2021 ◽  
Vol 2 (143) ◽  
pp. 120-129
Author(s):  
Vyacheslav F. Aulov ◽  
◽  
Yuri N. Rozhkov ◽  
Valentin P. Lyalyakin

Abrasive wear tests are a complex, time-consuming and long-term type of research on the wear-resistant properties of materials. Known methods for the experimental determination of the wear resistance of materials based on abrasive wear require an assessment of the wear resistance corresponding to the characteristics of field tests of parts with reinforcing coatings applied using high- frequency currents. (Research purpose) The research purpose is in analyzing the existing methods of testing for abrasive wear in the development of technological processes to increase the wear resistance of the surfaces of machine parts in comparison with the methodology developed by VIM, as well as comparing the methods of laboratory tests and field tests with the method proposed in this paper. (Materials and methods) Authors chose the IM-01 installation of the VISKHOM design for laboratory research, which uses powder abrasive. The article describes the most similar methods of foreign authors. The drill bits of Amazone seeders were strengthened according to the selected testing technology. The plates with a size of 60x40 and a thickness of 5-7 millimeters were selected as samples for testing the relative wear resistance. According to the VIM method, an abrasive radial petal circle is used as an abrasive material on the M-1 installation. (Results and discussion) The test results are expressed by the relative wear resistance index ε, which is equal to the ratio of the wear resistance of the test sample to the wear resistance of the standard. The use of the relative wear resistance index allows to increase the accuracy of the results obtained due to the exclusion of the influence of natural changes in external parameters that determine the wear rate during the test. (Conclusions) The proposed device makes it possible to provide accelerated comparative tests of samples and improve the stability of obtaining wear characteristics in a relatively short time (with the practical use of the device, the time spent on testing of one sample was about 8 minutes).


2016 ◽  
Vol 6 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Шовкопляс ◽  
Aleksandr Shovkoplyas

With blunt disks above the permissible thickness of the blades removed and sharpened with the formation of the nominal geometry of the cutting edge. The diameter of the discs de-creases. When you restore a disk of the working bodies can also produce their hardening, using: hard and wear-resistant materials, chemical heat treatment (boriding), the hardening by a method of electrical discharge machining, the application of polymeric and composite materials, cladding wear tape, the hardening by rolling.


2021 ◽  
Vol 3 (144) ◽  
pp. 108-115
Author(s):  
Said N. Sharifullin ◽  
◽  
Ayzat S. Akhmetzyanov ◽  
Tat’yana V. Toporkova

The article considers a new direction in optimizing the process of plasma hardening of the surfaces of cutting elements of agricultural machines based on the use of electric spark discharge energy. (Research purpose) The research purpose is in optimizing the technological process of hardening the surfaces of cutting elements of agricultural machines by the method of electric spark alloying of carbide material elements. (Materials and methods) A device under RF patent No. 2655420, developed by the scientific supervisor of the subject S. N. Sharifullin, was used for electric spark alloying. A tungsten-cobalt rod with a diameter of 4 millimeters, consisting of 94 percent tungsten and 6 percent cobalt, was used as the electrode material for this case. The processed sample of 65G steel, which is the main material of the working bodies of tillage equipment. The physical and chemical properties of the samples were studied with a scanning electron microscope EVO 50 XVP from Zeiss. (Results and discussion) After the electric spark treatment of the alloyed elements, there were about ten, while their spectra also appear at different irradiation energies. The alloyed elements in the surface layer are not only separate, but also in the form of compounds with other elements. Such alloying elements as carbon, cobalt and tungsten appeared in a noticeable amount in the surface layer. Electric spark treatment allows increasing the microhardness of the surfaces of cutting elements of tillage equipment up to three times. (Conclusions) When developing a mathematical model of the electric spark formation of wear-resistant coatings on the treated surfaces, it is necessary to use the energy conservation equations of the electron gas, the Maxwell equations, the continuity and momentum equations. The complex solution of these equations makes it possible to obtain the required output parameters depending on the input ones.


Author(s):  
S. Sidorov ◽  
D. Mironov ◽  
I. Lickin ◽  
M. Kostomakhin

It was shown that plow working bodies for cutting the soil layer of composite structures are now increasingly used. Authors developed new composite working bodies for domestic plows and conducted fi eld operational tests. Authors also produced a batch of experienced new working bodies. There was applied promising steel having a tensile strength after heat treatment of more than 1580 MPa. Authors increased wear resistance of the blade frame and bits hardening hard alloy method of plasma surfacing. There was developed overhead retractable chisel, increasing the resource of the working body by an additional 25–40 %. There was improved geometry of the blade part was achieved by creating a curved surface of the front side of the involute type skeleton. It showed that on diff erent types of soils, experienced plowshares surpassed the serial resource from 2.0 to 4 or more times. It was established that the most metal-intensive and expensive part of the working body, the skeleton, in most cases, with the maximum operating time of the entire product has a working condition, and for further operation it is enough to replace a cheaper replaceable chisel. It was shown that the advantage of experimental working bodies with an overhead chisel over serial ones is the wear on medium soils with a hardness of up to 3.2 MPa per day 1.8–2.2 times, on heavy, hardness more than 4 MPa in 2.5–4.0 times.


Author(s):  
Valeriy Bagrov

Despite a large number of studies in the field of assessing the causes of the formation of hot and cold cracks during surfacing of wear-resistant alloys, today the issues of working out the use of economically alloyed wear-resistant materials and the technique of their surfacing remain relevant. Goal: The purpose of this work is to study the effect of the structure and phase composition on the wear resistance of economically alloyed metastable and secondary hardening steels of the Cr-Mn-Ti system, as well as with additional alloying with Mo, B, V. Mechanized surfacing was carried out with flux cored wires AN-22 and AN-20 with the supply of a de-energized additive to the head of the weld pool, which reduces the content of sulfur and phosphorus, the specific consumption of electricity and increases the assimilation of alloying elements and the relative mass of the flux. Cladding by manual arc welding was carried out with coated electrodes with the addition of a depleted CaF2-coated flux-cored wire filler. When surfacing with a de-energized additive, the ratio of the filler to the main electrode, the relative mass was determined by β = m1 / m2 (m1, m2 are the mass of the filler and the electrode rod, respectively). Submerged arc surfacing was carried out in the following modes: IN = 300 ... 350 A, UD = 26 ... 30 V, q = 6 ... 10 kJ / cm, with manual surfacing - IN = 180 ... 220 A, UD = 25 ... Results: The studies carried out confirm the possibility of the formation of a “white band” both in alloys with a high concentration of austenitizing elements (Mn, C, Ni) and when alloying carbide-forming elements with a relatively low affinity for carbon (V, Mo). The indicators of resistance to cracking (КС, j-integral, δС), and, consequently, resistance to wear of secondary hardening steels are higher than those of metastable and tool steels.


Sign in / Sign up

Export Citation Format

Share Document