scholarly journals Supernovae Type Ia: non-standard candles of the Universe

2011 ◽  
Author(s):  
Alexey Bogomazov ◽  
A. V. Tutukov
Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1387 ◽  
Author(s):  
Denitsa Staicova ◽  
Michail Stoilov

In a recent work, we demonstrated that a modified gravity model in which a scalar “darkon” field is coupled to both the standard Riemannian metric and to another non-Riemannian volume form is compatible with observational data from Supernovae Type Ia. Here, we investigate a more complicated model with an additional “inflaton” scalar field. We demonstrate numerically that the model can qualitatively reproduce the Universe inflation epoch, matter dominated epoch, and present accelerating expansion in a seamless way. We show that such solutions occur only when the model parameters are within a very particular range. The main numerical problem we are faced with is reproducing the extremely small time of the inflation epoch. Here, we present how the variation of some parameters affects this time.


2016 ◽  
Vol 8 (3) ◽  
pp. 5
Author(s):  
Jirí Stavek

<p class="1Body">An attempt is presented for the description of the spectral colors using the standard trigonometric tools in order to extract more information about photons. We have arranged the spectral colors on an arc of the circle with the radius R = 1 and the central angle θ = π/3 when we have defined cos (θ) = λ<sub>380</sub>/λ<sub>760</sub> = 0.5. Several trigonometric operations were applied in order to find the gravity centers for the scotopic, photopic, and mesopic visions. The concept of the center of gravity of colors introduced Isaac Newton. We have postulated properties of the long-lived photons with the new interpretation of the Hubble (Zwicky-Nernst) constant H<sub>0</sub> = 2.748… * 10<sup>-18</sup> kg kg<sup>-1 </sup>s<sup>-1</sup>, the specific mass evaporation rate (SMER) of gravitons from the source mass. The stability of international prototypes of kilogram has been regularly checked. We predict that those standard kilograms due to the evaporation of gravitons lost 8.67 μg kg<sup>-1</sup> century<sup>-1</sup>. The energy of long-lived photons was trigonometrically decomposed into three parts that could be experimentally tested: longitudinal energy, transverse energy and energy of evaporated gravitons. We tested the properties of the long-lived photons with the experimental data published for the best available standard candles: supernovae Type Ia. There was found a surprising match of those experimental data with the model of the long-lived photons. Finally, we have proposed a possible decomposition of the big G (Newtonian gravitational constant) and the small kappa κ (Einsteinian gravitational constant) in order to get a new insight into the mysterious gravitational force and/or the curvature concept.</p>


2011 ◽  
Vol 20 (06) ◽  
pp. 1039-1051 ◽  
Author(s):  
NINFA RADICELLA ◽  
MAURO SERENO ◽  
ANGELO TARTAGLIA

The cosmic defect theory has been confronted with four observational constraints: primordial nuclear species abundances emerging from the big bang nucleosynthesis; large scale structure formation in the Universe; cosmic microwave background acoustic scale; luminosity distances of type Ia supernovae. The test has been based on a statistical analysis of the a posteriori probabilities for three parameters of the theory. The result has been quite satisfactory and such that the performance of the theory is not distinguishable from that of the ΛCDM theory. The use of the optimal values of the parameters for the calculation of the Hubble constant and the age of the Universe confirms the compatibility of the cosmic defect approach with observations.


2011 ◽  
Vol 21 (3) ◽  
pp. 253 ◽  
Author(s):  
Vo Quoc Phong

According to experimental data of SNe Ia (Supernovae type Ia), we will discuss in detial dynamics of the DGP model and introduce a simple parametrization of matter $\omega$, in order to analyze scenarios of the expanding universe and the evolution of the scale factor. We find that the dimensionless matter density parameter at the present epoch $\Omega^0_m=0.3$, the age of the universe $t_0= 12.48$ Gyr, $\frac{a}{a_0}=-2.4e^{\frac{-t}{25.56}}+2.45$. The next we study the linear growth of matter perturbations, and we assume a definition of the growth rate, $f \equiv \frac{dln\delta}{dlna}$. As many authors for many years, we have been using a good approximation to the growth rate $f \approx \Omega^{\gamma(z)}_m$, we also find that the best fit of the growth index, $\gamma(z)\approx 0.687 - \frac{40.67}{1 + e^{1.7. (4.48 + z)}}$, or $\gamma(z)= 0.667 + 0.033z$ when $z\ll1$. We also compare the age of the universe and the growth index with other models and experimental data. We can see that the DGP model describes the cosmic acceleration as well as other models that usually refers to dark energy and Cold Dark Matter (CDM).


Author(s):  
Fred C. Adams

As we take a longer-term view of our future, a host of astrophysical processes are waiting to unfold as the Earth, the Sun, the Galaxy, and the Universe grow increasingly older. The basic astronomical parameters that describe our universe have now been measured with compelling precision. Recent observations of the cosmic microwave background radiation show that the spatial geometry of our universe is flat (Spergel et al., 2003). Independent measurements of the red-shift versus distance relation using Type Ia supernovae indicate that the universe is accelerating and apparently contains a substantial component of dark vacuum energy (Garnavich et al., 1998; Perlmutter et al., 1999; Riess et al., 1998). This newly consolidated cosmological model represents an important milestone in our understanding of the cosmos. With the cosmological parameters relatively well known, the future evolution of our universe can now be predicted with some degree of confidence (Adams and Laughlin, 1997). Our best astronomical data imply that our universe will expand forever or at least live long enough for a diverse collection of astronomical events to play themselves out. Other chapters in this book have discussed some sources of cosmic intervention that can affect life on our planet, including asteroid and comet impacts (Chapter 11, this volume) and nearby supernova explosions with their accompanying gamma-rays (Chapter 12, this volume). In the longerterm future, the chances of these types of catastrophic events will increase. In addition, taking an even longer-term view, we find that even more fantastic events could happen in our cosmological future. This chapter outlines some of the astrophysical events that can affect life, on our planet and perhaps elsewhere, over extremely long time scales, including those that vastly exceed the current age of the universe. These projections are based on our current understanding of astronomy and the laws of physics, which offer a firm and developing framework for understanding the future of the physical universe (this topic is sometimes called Physical Eschatology – see the review of ćirković, 2003). Notice that as we delve deeper into the future, the uncertainties of our projections must necessarily grow.


2020 ◽  
Vol 501 (1) ◽  
pp. 784-801 ◽  
Author(s):  
Philipp Denzel ◽  
Jonathan P Coles ◽  
Prasenjit Saha ◽  
Liliya L R Williams

ABSTRACT We present a determination of the Hubble constant from the joint, free-form analysis of eight strongly, quadruply lensing systems. In the concordance cosmology, we find $H_0{} = 71.8^{+3.9}_{-3.3}\, \mathrm{km}\, \mathrm{s}^{-1}\, \mathrm{Mpc}^{-1}{}{}$ with a precision of $4.97{{\ \rm per\ cent}}$. This is in agreement with the latest measurements from supernovae Type Ia and Planck observations of the cosmic microwave background. Our precision is lower compared to these and other recent time-delay cosmography determinations, because our modelling strategies reflect the systematic uncertainties of lensing degeneracies. We furthermore are able to find reasonable lensed image reconstructions by constraining to either value of H0 from local and early Universe measurements. This leads us to conclude that current lensing constraints on H0 are not strong enough to break the ‘Hubble tension’ problem of cosmology.


2019 ◽  
Vol 625 ◽  
pp. A15 ◽  
Author(s):  
I. Tutusaus ◽  
B. Lamine ◽  
A. Blanchard

Context. The cosmological concordance model (ΛCDM) is the current standard model in cosmology thanks to its ability to reproduce the observations. The first observational evidence for this model appeared roughly 20 years ago from the type-Ia supernovae (SNIa) Hubble diagram from two different groups. However, there has been some debate in the literature concerning the statistical treatment of SNIa, and their stature as proof of cosmic acceleration. Aims. In this paper we relax the standard assumption that SNIa intrinsic luminosity is independent of redshift, and examine whether it may have an impact on our cosmological knowledge and more precisely on the accelerated nature of the expansion of the universe. Methods. To maximise the scope of this study, we do not specify a given cosmological model, but we reconstruct the expansion rate of the universe through a cubic spline interpolation fitting the observations of the different cosmological probes: SNIa, baryon acoustic oscillations (BAO), and the high-redshift information from the cosmic microwave background (CMB). Results. We show that when SNIa intrinsic luminosity is not allowed to vary as a function of redshift, cosmic acceleration is definitely proven in a model-independent approach. However, allowing for redshift dependence, a nonaccelerated reconstruction of the expansion rate is able to fit, at the same level of ΛCDM, the combination of SNIa and BAO data, both treating the BAO standard ruler rd as a free parameter (not entering on the physics governing the BAO), and adding the recently published prior from CMB observations. We further extend the analysis by including the CMB data. In this case we also consider a third way to combine the different probes by explicitly computing rd from the physics of the early universe, and we show that a nonaccelerated reconstruction is able to nicely fit this combination of low- and high-redshift data. We also check that this reconstruction is compatible with the latest measurements of the growth rate of matter perturbations. We finally show that the value of the Hubble constant (H0) predicted by this reconstruction is in tension with model-independent measurements. Conclusions. We present a model-independent reconstruction of a nonaccelerated expansion rate of the universe that is able to fit all the main background cosmological probes nicely. However, the predicted value of H0 is in tension with recent direct measurements. Our analysis points out that a final reliable and consensual value for H0 is critical to definitively prove cosmic acceleration in a model-independent way.


2020 ◽  
Vol 499 (3) ◽  
pp. 4312-4324
Author(s):  
Alexandra Kozyreva ◽  
Luke Shingles ◽  
Alexey Mironov ◽  
Petr Baklanov ◽  
Sergey Blinnikov

ABSTRACT We systematically explore the effect of the treatment of line opacity on supernova light curves. We find that it is important to consider line opacity for both scattering and absorption (i.e. thermalization, which mimics the effect of fluorescence). We explore the impact of the degree of thermalization on three major types of supernovae: Type Ia, Type II-peculiar, and Type II-plateau. For this we use the radiative transfer code stella and analyse broad-band light curves in the context of simulations done with the spectral synthesis code artis and in the context of a few examples of observed supernovae of each type. We found that the plausible range for the ratio between absorption and scattering in the radiation hydrodynamics code stella is (0.8–1):(0.2–0), i.e. the recommended thermalization parameter is 0.9.


Author(s):  
R. Napiwotzki ◽  
C.A. Karl ◽  
G. Nelemans ◽  
L. Yungelson ◽  
N. Christlieb ◽  
...  
Keyword(s):  
Type Ia ◽  

1991 ◽  
Vol 9 (2) ◽  
pp. 261-265 ◽  
Author(s):  
W. J. Couch ◽  
S. Perlmutter ◽  
H. J. M. Newburg ◽  
C. Pennypacker ◽  
G. Goldhaber ◽  
...  

AbstractA search for Type Ia supernovae at cosmological distances is being undertaken in an attempt to exploit their standard candle property to constrain the mass density of the universe. We describe the rationale for such a program, the observational approach and strategy taken, and the progress made to date. The science that is being generated by the project in additional to supernova detection is also discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document