The effect of microalloying on mechanical properties of low-carbon chromium-nickel-molybdenum steel

Author(s):  
S. A. Golosienko ◽  
N. A. Minyakin ◽  
V. V. Ryabov ◽  
T. G. Semicheva ◽  
E. I. Khlusova

The work covers the effect of niobium, as well as niobium and vanadium together, on mechanical properties of high-strength chromium-nickel-molybdenum steel after thermal improvement (heat treatment). The mechanical properties of steels are determined after applying various tempering temperatures (from 580 to 660°C), durations of tempering (from 1 to 16 hours), and also after quenching from rolling heat and furnace heat with subsequent tempering. It is shown that after quenching and tempering in the temperature range 580– 660°C, simultaneous microalloying by niobium and vanadium, compared to microalloying by niobium alone, increases the yield strength but in significantly decreases toughness and ductility. Quenching from rolling heat increases strength while maintaining high toughness and the increase in strength is most noticeable for steel microalloyed only by niobium.

Alloy Digest ◽  
2016 ◽  
Vol 65 (1) ◽  

Abstract SPARTAN II (HSLA-100) is one of the family of Spartan high strength (>690 MPa, or >100 ksi, minimum yield strength), high toughness, improved weldability steels, which are alternatives to traditional quenched and tempered alloy steels. The Spartan family of steels are low carbon, copper precipitation hardened steels. Spartan II has improved yield strength compared to Spartan I. This datasheet provides information on composition, physical properties, microstructure, tensile properties. It also includes information on forming and joining. Filing Code: SA-738. Producer or source: ArcelorMittal USA.


2018 ◽  
Vol 284 ◽  
pp. 351-356 ◽  
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim A. Ryzhkov

The high strength aerospace steel alloyed with Cr, Mn, Si, Ni, W and Mo was studied. The austenite transformations under continuous cooling conditions were investigated using the dilatometer analysis at the cooling rates 0.1...30 °C/s. The mechanical properties of the studied steel were determined after the conventional quenching and tempering heat treatment. The dependences of the mechanical properties on the tempering temperature were obtained. The novel quenching and partitioning heat treatment was applied to the steel under consideration. The microstructure and the mechanical properties were studied after three different modes of the quenching and partitioning (QP) treatment: single-stage QP, two-stage QP and single-stage QP with subsequent tempering (QPT).


2013 ◽  
Vol 58 (1) ◽  
pp. 25-30 ◽  
Author(s):  
G. Golanski ◽  
J. Słania

The paper presents a research on the influence of multistage heat treatment with the assumed parameters of temperature and time on the microstructure and mechanical properties of high-chromium martensitic GX12CrMoVNbN9-1 (GP91) cast steel. In the as-cast state GP91 cast steel was characterized by a microstructure of lath martensite with numerous precipitations of carbides of the M23C6, M3C and NbC type, with its properties higher than the required minimum. Hardening of the examined cast steel contributes to obtaining a microstructure of partly auto-tempered martensite of very high strength properties and impact strength KV on the level of 9-15 J. Quenching and tempering with subsequent stress relief annealing of GP91 cast steel contributed to obtaining the microstructure of high-tempered lath martensite with numerous precipitations of the M23C6 and MX type of diverse size. The microstructure of GP91 cast steel received after heat treatment was characterized by strength properties (yield strength, tensile strength) higher than the required minimum and a very high impact energy KV. It has been proved that GP91 cast steel subject to heat treatment No. 2 as a result of two-time heating above the Ac3 temperature is characterized by the highest impact energy.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


Author(s):  
Sang-Seop Lim ◽  
Chung-Gil Kang

With increasing oil consumption, we have to find more oil resources in the deep sea. The extreme working condition of the deep sea requires high toughness and high strength values at low temperatures. Academic institutions limited the chemical composition of the requested casting steel to meet their requirements of fracture toughness and weldability. Thus, the carbon content was set approximately 0.10% based on classification societies which required specific mechanical properties of strength, elongation, reduction area and impact energy (−40°C). In this study, we find the optimal heat treatment condition of low carbon steel (0.10%C) to obtain the desired mechanical properties at low temperature (−40°C) according to different quenching parameters (heating times) and tempering parameters (heating temperatures, cooling methods).


Author(s):  
Takahiro Kamo ◽  
Takeshi Urabe ◽  
Kazushi Ohnishi ◽  
Hirofumi Nakamura ◽  
Shuji Okaguchi ◽  
...  

Offshore structure steel with high strength of YS550MPa has been investigated. As for offshore structure steel, high toughness in welded joints is required in addition to that in base metal. TMCP type steel of up to YS420MPa grade is used widely, and up to YS500MPa grade is reported in some papers. However, steel of higher strength grade with good toughness and weldability will be beneficial to structures in strict conditions. To reach the YS550MPa requirement, hardening effect by Cu precipitation was utilized. Steel plates were designed with micro-alloyed low C-Mn-Cu-Ni-Cr-Mo system. The combination of the copper precipitation and TMCP technology can increase strength without deteriorating toughness and weldability. Heat treatment for Cu precipitation was carried out to optimize the balance of strength and toughness of the base metal. The developed steel also shows good HAZ CTOD toughness up to 76.2mm thickness in several welding conditions including after PWHT. The newly developed steel has the possibility to increase the flexibility to design large-sized structures.


2017 ◽  
Vol 265 ◽  
pp. 712-716 ◽  
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim Ryzhkov ◽  
Aleksandra A. Kuklina

The CCT diagram of the high strength D6AC steel was plotted using the dilatometer data, microstructure investigation, and hardness measurements. The microstructure of the steel under consideration was estimated after various cooling conditions and quenching and tempering. The heat treatment technology of D6AC steel drill bits was developed to obtain the required mechanical properties.


2021 ◽  
Vol 410 ◽  
pp. 221-226
Author(s):  
Mikhail V. Maisuradze ◽  
Maxim A. Ryzhkov ◽  
Dmitriy I. Lebedev

The features of microstructure and mechanical properties of the aerospace high strength steel were studied after the implementation of various heat treatment modes: conventional oil quenching and tempering, quenching-partitioning, austempering. The dependence of the mechanical properties on the tempering temperature was determined. The basic patterns of the formation of mechanical properties during the implementation of isothermal heat treatment were considered. The optimal heat treatment conditions for the studied steel were established.


Alloy Digest ◽  
2016 ◽  
Vol 65 (3) ◽  

Abstract SPARTAN III (HSLA-100) is one of the family of Spartan high strength (>690 MPa, or >100 ksi, minimum yield strength), high toughness, improved weldability steels, which are alternatives to traditional quenched and tempered alloy steels. The Spartan family of steels are low carbon, copper precipitation hardened steels. Spartan III has greater yield strength compared to Spartan I and Spartan II. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on forming and joining. Filing Code: SA-743. Producer or source: ArcelorMittal USA.


Sign in / Sign up

Export Citation Format

Share Document