Effects of habitat fragmentation on the genetic diversity and differentiation of Dendrolimus punctatus (Lepidoptera: Lasiocampidae) in Thousand Island Lake, China, based on mitochondrial COI gene sequences

2018 ◽  
Vol 109 (1) ◽  
pp. 62-71 ◽  
Author(s):  
K. Lv ◽  
J.-R. Wang ◽  
T.-Q. Li ◽  
J. Zhou ◽  
J.-Q. Gu ◽  
...  

AbstractThousand Island Lake (TIL) is a typical fragmented landscape and an ideal model to study ecological effects of fragmentation. Partial fragments of the mitochondrial cytochrome oxidase subunit I gene of 23 island populations of Dendrolimus punctatus in TIL were sequenced, 141 haplotypes being identified. The number of haplotypes increased significantly with the increase in island area and shape index, whereas no significant correlation was detected between three island attributes (area, shape and isolation) and haplotype diversity. However, the correlation with number of haplotypes was no longer significant when the ‘outlier’ island JSD (the largest island) was not included. Additionally, we found no significant relationship between geographic distance and genetic distance. Geographic isolation did not obstruct the gene flow among D. punctatus populations, which might be because of the high dispersal capacity of this pine moth. Fragmentation resulted in the conversion of large and continuous habitats into isolated, small and insular patches, which was the primary effect on the genetic diversity of D. punctatus in TIL. The conclusion to emphasize from our research is that habitat fragmentation reduced the biological genetic diversity to some extent, further demonstrating the importance of habitat continuity in biodiversity protection.

Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2007 ◽  
Vol 23 (6) ◽  
pp. 623-634 ◽  
Author(s):  
Suzan Benedick ◽  
Thomas A. White ◽  
Jeremy B. Searle ◽  
Keith C. Hamer ◽  
Nazirah Mustaffa ◽  
...  

Many areas of rain forest now exist as habitat fragments, and understanding the impacts of fragmentation is important for determining the viability of populations within forest remnants. We investigated impacts of forest fragmentation on genetic diversity in the butterfly Mycalesis orseis (Satyrinae) in Sabah (Malaysian Borneo). We investigated mtDNA diversity in 90 individuals from ten forest sites typical of the sizes of forest remnants that currently exist in the region. Nucleotide diversity declined with increasing isolation of remnants, but there was no effect of remnant size or population size, and haplotype diversity was similar among sites. Thus, approximately 50 y after forest fragmentation, few changes in genetic diversity were apparent and remnants apparently supported genetically viable populations of this butterfly. Many studies have shown that responses of species to habitat fragmentation usually follow a time delay, and so we developed a Monte Carlo simulation model to investigate changes in genetic diversity over time in small remnants. Model output indicated a substantial time delay (> 100 y) between fragmentation and genetic erosion, suggesting that, in the smallest study remnants, an increased risk of extinction from reduced genetic diversity is likely in the longer term.


Biology ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 43 ◽  
Author(s):  
Rafael Lemos ◽  
Cristiane Matielo ◽  
Dalvan Beise ◽  
Vanessa da Rosa ◽  
Deise Sarzi ◽  
...  

Invasive plant species are expected to display high dispersal capacity but low levels of genetic diversity due to the founder effect occurring at each invasion episode. Understanding the history of invasions and the levels of genetic diversity of such species is an important task for planning management and monitoring strategy for these events. Peruvian Peppertree (Schinus molle L.) is a pioneer tree species native from South America which was introduced in North America, Europe and Africa, becoming a threat to these non-native habitats. In this study, we report the discovery and characterization of 17 plastidial (ptSSR) and seven nuclear (nSSR) markers for S. molle based on low-coverage whole-genome sequencing data acquired through next-generation sequencing. The markers were tested in 56 individuals from two natural populations sampled in the Brazilian Caatinga and Pampa biomes. All loci are moderately to highly polymorphic and revealed to be suitable for genetic monitoring of new invasions, for understanding the history of old invasions, as well as for genetic studies of native populations in their natural occurrence range and of orchards established with commercial purposes.


2014 ◽  
Author(s):  
Benjamin Zuckerberg ◽  
Matt Carling ◽  
Roi Dor ◽  
Elise Ferree ◽  
Garth Spellman ◽  
...  

Habitat fragmentation is a major driver of environmental change affecting wildlife populations across multiple levels of biological diversity. Much of the recent research in landscape genetics has focused on quantifying the influence of fragmentation on genetic variation among populations, but questions remain as to how habitat loss and configuration influences within-population genetic diversity. Habitat loss and fragmentation might lead to decreases in genetic diversity within populations, which might have implications for population persistence over multiple generations. We used genetic data collected from populations of three species occupying forested landscapes across a broad geographic region: Mountain Chickadee (Poecile gambeli; 22 populations), White-breasted Nuthatch (Sitta carolinensis; 13 populations) and Pygmy Nuthatch (Sitta pygmaea; 19 populations) to quantify patterns of haplotype and nucleotide diversity across a range of forest fragmentation. We predicted that fragmentation effects on genetic diversity would vary depending on dispersal capabilities and habitat specificity of the species. Forest aggregation and the variability in forest patch area were the two strongest landscape predictors of genetic diversity. We found higher haplotype diversity in populations of P. gambeli and S. carolinensis inhabiting landscapes characterized by lower levels of forest fragmentation. Conversely, S. pygmaea demonstrated the opposite pattern of higher genetic diversity in fragmented landscapes. For two of the three species, we found support for the prediction that highly fragmented landscapes sustain genetically less diverse populations. We suggest, however, that future studies should focus on species of varying life-history traits inhabiting independent landscapes to better understand how habitat fragmentation influences within-population genetic diversity.


2015 ◽  
Vol 16 (3) ◽  
pp. 489 ◽  
Author(s):  
C. MAGGI ◽  
M. GONZÁLEZ-WANGÜEMERT

Parastichopus regalis (Cuvier, 1817) is the most expensive seafood product on the catalonian market (NE Spain), with prices around 130 €/Kg (fresh weight). Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. We provided the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI) and 16S genes, as well as a morphological description of its populations. Individuals were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia). We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed on COI gene. Population pairwise fixation index (FST), AMOVA and correspondence analysis (CA) based on COI, revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g. microsatellites) would be necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with decrease of the size and weight average and lower genetic diversity compared to locations without fishery pressure. For an appropriate management of this species, we suggest: 1) an accurate assessment of the stocks status along the Spanish coasts; 2) the study of the reproductive cycle of this target species and the establishment of a closed fishery season according to it; 3) the founding of protected areas (i.e. not take zones) to conserve healthy populations and favour the recruitment on the nearby areas.


2020 ◽  
Vol 10 (12) ◽  
pp. 5976-5989 ◽  
Author(s):  
Martina Prazeres ◽  
Raphaël Morard ◽  
T. Edward Roberts ◽  
Steve S. Doo ◽  
Jamaluddin Jompa ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1579
Author(s):  
Cuong Van Duong ◽  
Ji Hyoun Kang ◽  
Vinh Van Nguyen ◽  
Yeon Jae Bae

Aedes albopictus is a native mosquito to Southeast Asia with a high potential for disease transmission. Understanding how Ae. albopictus populations that develop in the species’ native range is useful for planning future control strategies and for identifying the sources of invasive ranges. The present study aims to investigate the genetic diversity and population structure of Ae. albopictus across various climatic regions of Vietnam. We analyzed mitochondrial cytochrome oxidase I (COI) gene sequences from specimens collected from 16 localities, and we used distance-based redundancy analysis to evaluate the amount of variation in the genetic distance that could be explained by both geographic distance and climatic factors. High levels of genetic polymorphism were detected, and the haplotypes were similar to those sequences from both temperate and tropical regions worldwide. Of note, these haplotype groups were geographically distributed, resulting in a distinct population structure in which northeastern populations and the remaining populations were genetically differentiated. Notably, genetic variation among the Ae. albopictus populations was driven primarily by climatic factors (64.55%) and to a lesser extent was also influenced by geographic distance (33.73%). These findings fill important gaps in the current understanding of the population genetics of Ae. albopictus in Vietnam, especially with respect to providing data to track the origin of the invaded regions worldwide.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Nayyar ◽  
R. G. Gracy ◽  
T. R. Ashika ◽  
G. Mohan ◽  
R. S. Swathi ◽  
...  

AbstractFall Armyworm (FAW), Spodoptera frugiperda, is a polyphagous pest capable of feeding over 80 plant species and was indigenous to the Western Hemisphere. Within a span of 4 years, FAW has established itself throughout most of the regions in Africa and Asia causing significant losses in maize production. Owing to its revamped distribution range, it would be prudent to analyze the ensuing genetic changes and study the emerging phylogeographic patterns across the world. In this regard, we would like to provide a current snapshot of genetic diversity of FAW in India 2 years after the initial introduction and compare it with the worldwide diversity in order to trace the origins and evolutionary trajectories of FAW in India. We have investigated around 190 FAW samples from different regions in India for strain identity and polymorphism analysis on the basis of partial mitochondrial cytochrome oxidase I (COI) gene sequences. Apart from the ancestral rice and corn strain haplotype, our study demonstrates the presence of 14 more haplotypes unique to India at a haplotype diversity of 0.356. We were also able to record inter-strain hybrid haplotypes of rice and corn strains in India. Regional heterogeneity within Indian populations seems to be quite low representative of extensive migration of FAW within India. Distribution analysis of pairwise differences and rejection of neutrality tests suggest that the FAW population in India might be undergoing expansion. Our data is consistent with the findings suggesting a recent and common origin for invasive FAW populations in Asia and Africa, and does not indicate multiple introductions to India. This study reports the highest genetic diversity for Indian FAW populations to date and will be useful to track the subsequent evolution of FAW in India. The findings would have important ramifications for FAW behavior and composition throughout the world.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yingying Zhao ◽  
Xiaochen Zhu ◽  
Ye Jiang ◽  
Zhi Li ◽  
Xin Li ◽  
...  

Abstract Background Chinese grass shrimp (Palaemonetes sinensis) is an important species widely distributed throughout China, which is ecologically relevant and possesses ornamental and economic value. These organisms have experienced a sharp decline in population due to overfishing. Therefore interest in P. sinensis aquaculture has risen in an effort to alleviate fishing pressure on wild populations. Therefore, we investigated the genetic diversity and variation of P. sinensis to verify the accuracy of previous research results, as well as to assess the risk of diversity decline in wild populations and provide data for artificial breeding. Methods Palaemonetes sinensis specimens from seven locations were collected and their genetic variability was assessed based on mitochondrial COI gene segments. DNA sequence polymorphisms for each population were estimated using DNASP 6.12. The demographic history and genetic variation were evaluated using Arlequin 3.11. At last, the pairwise genetic distance (Ds) values and dendrograms were constructed with the MEGA 11 software package. Results Our study obtained sequences from 325 individuals, and 41 haplotypes were identified among the populations. The haplotype diversity (Hd) and nucleotide diversity (π) indices ranged from 0.244 ± 0.083 to 0.790 ± 0.048 and from 0.0004 ± 0.0001 to 0.0028 ± 0.0006, respectively. Haplotype network analyses identified haplotype Hap_1 as a potential maternal ancestral haplotype for the studied populations. AMOVA results indicated that genetic variations mainly occurred within populations (73.07%). Moreover, according to the maximum variation among groups (FCT), analysis of molecular variance using the optimal two-group scheme indicated that the maximum variation occurred among groups (53.36%). Neutrality and mismatch distribution tests suggested that P. sinensis underwent a recent population expansion. Consistent with the SAMOVA analysis and haplotype network analyses, the Ds and FST between the population pairs indicated that the JN population was distinctive from the others. Conclusions Our study conducted a comprehensive characterization of seven wild P. sinensis populations, and our findings elucidated highly significant differences within populations. The JN population was differentiated from the other six populations, as a result of long-term geographical separation. Overall, the present study provided a valuable basis for the management of genetic resources and a better understanding of the ecology and evolution of this species.


1999 ◽  
Vol 56 (5) ◽  
pp. 803-813 ◽  
Author(s):  
Axayácatl Rocha-Olivares ◽  
Russell D Vetter

The genetic structure and phylogeography of 88 rosethorn rockfish (Sebastes helvomaculatus) from five localities (California, Oregon, British Columbia, and two in the Gulf of Alaska) were analyzed using DNA sequences from the mitochondrial control region. High levels of genetic diversity (h > 85%) and significant population genetic structure (FST = 0.13, P < 0.001; AMOVA ΦST = 0.15, P << 0.001) were found. A significant genetic break was detected (ΦCT = 0.22, P << 0.001) coinciding with the transition zone between the Oregonian and Aleutian zoogeographic provinces and consistent with retention and dispersal mechanisms associated with the oceanographic circulation of the region. A correlation between geographic distance and population genetic distance supported the hypothesis of gene flow dominated by pelagic-phase dispersal. Oregonian province populations had higher haplotype diversity, with >70% of the individuals representing a recent lineage absent in the Aleutian province. This suggests a limited northward dispersal across the zoogeographic boundary. The phylogeographic stucture may be due to a founder effect in the Aleutian province or an ocean circulation driven pseudo-vicariance. These results demonstrate that organisms with protracted pelagic-phase stages and high dispersal capability can exhibit population genetic structure that reflects their historical demography and present dispersal patterns.


Sign in / Sign up

Export Citation Format

Share Document