scholarly journals PROSES PEMBUATAN MESIN TRIBOMETER TIPE PIN ON DISK TEST BERSTANDAR ASTM G 99

2021 ◽  
Vol 10 (2) ◽  
pp. 115
Author(s):  
Naufan Erzha Sulistiono
Keyword(s):  
Author(s):  
Sahar Ghatrehsamani ◽  
Saleh Akbarzadeh

Wear coefficient and friction coefficient are two of the key parameters in the performance of any tribo-system. The main purpose of the present research is to use continuum damage mechanics to predict wear coefficient. Thus, a contact model is utilized that can be used to obtain the friction coefficient between the contacting surfaces. By applying this model to the continuum damage mechanics model, the wear coefficient between dry surfaces is predicted. One of the advantages of using this model is that the wear coefficient can be numerically predicted unlike other methods which highly rely on experimental data. In order to verify the results predicted by this model, tests were performed using pin-on-disk test rig for several ST37 samples. The results indicated that the wear coefficient increases with increasing the friction coefficient.


2021 ◽  
Vol 63 (2) ◽  
pp. 143-150
Author(s):  
Torben Buttler ◽  
Jens Hamje ◽  
Rolf Reiter ◽  
Volker Wesling

Abstract During polymer extrusion there are a variety of situations in which the screwthread of the extrusion screw has an unlubricated metal-to-metal contact with the barrel wall. At the same time the screw coating is subjected to the highest loads. The combination of a secondary hardening cold work steel 1.2379 and a chromium nitride coating deposited by ARC-PVD, which is frequently used in polymer processing, is characterized and investigated. The characterization is done by metallographic examination, SEM and CLSM. The tests were performed on a pin-on-disk and a pin-roll test rig. Different roughness levels were tested on the pin-on-disk test, where massive differences in wear behavior were found. A hybrid surface structure is proposed to optimize the tribosystem. On the pin-on-disk test stand, rollers made of the same material pairing were tested. The test speed was varied to highlight differences and similarities between the tribological systems. A wear minimization of 50 % was achieved and the similarities between the tribological systems were highlighted. In addition, the investigations led to the development of a new model thesis which provides a reason for the development of stippling on the screw when processing polycarbonate.


2011 ◽  
Vol 672 ◽  
pp. 17-22 ◽  
Author(s):  
Mario Rosso ◽  
Eva Dudrová ◽  
Marco Actis Grande ◽  
Róbert Bidulský

The present paper is focused on the wear characteristic of vacuum sintered Cr-Mo-[Mn]-[Cu] steels. The effect of chemical composition and the processing conditions in a vacuum furnace were evaluated. In such furnaces the cooling rate is generally determined by the pressure of the gas (N2) introduced into the chamber, the average cooling rates were calculated in the range of 1240°C to 400°C. The wear characteristics were analyzed as function of the processing and microstructures of the tested alloys through pin on disk test. Sintering of specimens in vacuum together with rapid cooling resulted in the formation of dominant martensitic microstructures with some small bainitic areas. The effect of both surface hardness and microstructure on the wear behaviour of the investigated steels shows the relation between the hardness and the wear rate. The influence of processing condition on the amount of martensite is also presented.


2012 ◽  
Vol 188 ◽  
pp. 422-427 ◽  
Author(s):  
Iosif Hulka ◽  
Viorel Aurel Şerban ◽  
Kari Niemi ◽  
Petri Vuoristo ◽  
Johannes Wolf

The aim of the work was to study the microstructure and wear properties of fine-structured HVOF and HVAF sprayed WC-10Co-4Cr coatings prepared from powder having submicron-sized tungsten carbides. The coatings were deposited by HVOF (High Velocity Oxygen Fuel) and HVAF (High Velocity Air Fuel) using propane as a fuel gas in both processes, and using oxygen or air as oxidizing gas for combustion, respectively. Nitrogen was used as carrier gas for the powder. Commercially available agglomerated and sintered cermet powder with main carbide sizes under 500 nm was used in this study. Scanning electron microscopy (SEM) and X-ray diffraction were performed in order to characterize the powder and the microstructures formed during the spraying processes. The microhardness HV0.3 of the coatings was investigated and the pin on disk test was used to determine the sliding wear behaviour. The rubber wheel abrasion test was performed in order to determine the abrasion wear resistance of the coatings.


2019 ◽  
pp. 1-12
Author(s):  
C. F. Onyeanusi ◽  
S. C. Nwigbo ◽  
N. B. Anosike ◽  
C. A. Nwajude

Friction and wear control of movable parts in machines remain a critical challenge in the industries. Determination of measurement to control this often involves both the material and the lubricant. A wear test experiment using pin-on-disk apparatus to determine the wear pattern on a sample of aluminium and copper materials, lubricated with vegetable oil of palm kernel origin was conducted. Wear parameters, which include frictional coefficient, wear rate, and heat generation (temperature) were evaluated alongside thermal stress-strains on the pin on disk. Results showed that under the same conditions, the coefficient of friction reduces with the application of lubricant up to 84% and 7% for aluminium and copper respectively. The wear pattern for both materials when lubricated were evaluated and compared with dry condition to establish the relationships.


Author(s):  
Mark Chong Wai Lup ◽  
Sujeet K. Sinha ◽  
Seh Chun Lim

This paper aims to model abrasive wear for polymers using intersecting scratching technique. Scratch test and pin-on-disc test were conducted on five different polymers. Wear debris generated by intersecting scratching test was compared and correlated with the specific wear rates of the same polymers in a pin-on-disk test using ground steel surface as the counterface. It is the purpose of this paper to establish that an intersecting scratching test can be used as a means to qualitatively and quantitatively characterize wear performance of polymers.


1994 ◽  
Vol 116 (2) ◽  
pp. 275-279 ◽  
Author(s):  
Shinsuke Higuchi ◽  
Takeshi Miyazaki ◽  
Yasutaka Suzuki ◽  
Hideaki Tanaka ◽  
Iwao Matsuyama

Oxidizing catalytic activity of a slider is a factor which could affect wear of magnetic disks with a carbon overcoat. Al2O3 composites containing 2–50 mol% TiO2 were produced, which had different oxidizing catalytic activities but nearly the same hardness and thermal conductivity. Activation energy (Ec) for carbon oxidation when it is mixed with the composite was measured to get the oxidizing catalytic activity, and it was found that Ec changed from about 70 kJ/mol for Al2O3 to about 110 kJ/mol for Al2O3 containing 9.1–16.7 mol% TiO2. TiO2 addition increased and decreased Ec. The former was due to segregation of the Ti-Al-O phase at the Al2O3 grain boundary, which could inhibit the catalysis at the Al2O3 grain boundary. The latter was due to the unreacted TiO2 phase, which by itself has high catalytic activity. TiO2-Al2O3 sliders having different Ec were examined in sliding wear against a magnetic disk with a carbon overcoat using a pin-on-disk test system. It was found that wear rate of the carbon overcoat was lower when the slider had a larger Ec, i.e., lower catalytic activity. It was also found that wear particles of the carbon overcoat were likely to be larger with lower catalytic activity.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Chul Hee Lee ◽  
Deuk Won Lee ◽  
Jae Young Choi ◽  
Seung Bok Choi ◽  
Won Oh Cho ◽  
...  

Recently, research on the application of magnetorheological (MR) fluid in mechanical engineering has been widely expanded, while the performance of MR fluid in tribology has also been investigated. In this study, a modification of MR fluid, which is modified by adding certain additives, is attempted to improve tribological performance. After modification, wear and friction are measured by four-ball wear tester and linear-oscillation (SRV) tester under no magnetic fields. Subsequently, the oxidation induction time (OIT) is evaluated by pressure differential scanning calorimetry (PDSC). Then, to observe the tribological performance under magnetic fields, pin-on-disk test is conducted to confirm the effects of the commercial MR fluid and modified MR fluid on friction and wear in different operating and magnetic conditions. Also, the modification effects on surface roughness are investigated by using a profilometer. Moreover, the microscopic changes of surfaces and MR particles are investigated by using scanning electron microscopy (SEM).


Sign in / Sign up

Export Citation Format

Share Document