2D/3D probing of hierarchically structured functional materials using complementary X-ray and electron microscopy

2021 ◽  
Author(s):  
Yakub Fam ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. eaax3009 ◽  
Author(s):  
Yuan Hung Lo ◽  
Chen-Ting Liao ◽  
Jihan Zhou ◽  
Arjun Rana ◽  
Charles S. Bevis ◽  
...  

Multimodal microscopy that combines complementary nanoscale imaging techniques is critical for extracting comprehensive chemical, structural, and functional information, particularly for heterogeneous samples. X-ray microscopy can achieve high-resolution imaging of bulk materials with chemical, magnetic, electronic, and bond orientation contrast, while electron microscopy provides atomic-scale spatial resolution with quantitative elemental composition. Here, we combine x-ray ptychography and scanning transmission x-ray spectromicroscopy with three-dimensional energy-dispersive spectroscopy and electron tomography to perform structural and chemical mapping of an Allende meteorite particle with 15-nm spatial resolution. We use textural and quantitative elemental information to infer the mineral composition and discuss potential processes that occurred before or after accretion. We anticipate that correlative x-ray and electron microscopy overcome the limitations of individual imaging modalities and open up a route to future multiscale nondestructive microscopies of complex functional materials and biological systems.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1450
Author(s):  
Martina Záleská ◽  
Milena Pavlíková ◽  
Adam Pivák ◽  
Šimon Marušiak ◽  
Ondřej Jankovský ◽  
...  

The ongoing tendency to create environmentally friendly building materials is nowadays connected with the use of reactive magnesia-based composites. The aim of the presented research was to develop an ecologically sustainable composite material based on MOC (magnesium oxychloride cement) with excellent mechanical, chemical, and physical properties. The effect of the preparation procedure of MOC pastes doped with graphene nanoplatelets on their fresh and hardened properties was researched. One-step and two-step homogenization techniques were proposed as prospective tools for the production of MOC-based composites of advanced parameters. The conducted experiments and analyses covered X-ray fluorescence, scanning electron microscopy, energy-dispersive spectroscopy, high-resolution transmission electron microscopy, sorption analysis, X-ray diffraction, and optical microscopy. The viscosity of the fresh mixtures was monitored using a rotational viscometer. For the hardened composites, macro- and micro-structural parameters were measured together with the mechanical parameters. These tests were performed after 7 days and 14 days. The use of a carbon-based nanoadditive led to a significant drop in porosity, thus densifying the MOC matrix. Accordingly, the mechanical resistance was greatly improved by graphene nanoplatelets. The two-step homogenization procedure positively affected all researched functional parameters of the developed composites (e.g., the compressive strength increase of approximately 54% after 7 days, and 37% after 14 days, respectively) and can be recommended for the preparation of advanced functional materials reinforced with graphene.


2019 ◽  
Vol 26 (5) ◽  
pp. 1769-1781 ◽  
Author(s):  
Yakub Fam ◽  
Thomas L. Sheppard ◽  
Johannes Becher ◽  
Dennis Scherhaufer ◽  
Heinz Lambach ◽  
...  

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.


2020 ◽  
Vol 12 (4) ◽  
pp. 110-119
Author(s):  
I. Solizoda ◽  
◽  
V. Zhivulin ◽  
D. Sherstyuk ◽  
A. Starikov ◽  
...  

The development of scientific and technological progress is impossible without the creation of new functional materials. One of the classes of such materials are hexagonal ferrites. Their unique physical properties make them an irreplaceable material for the production of high-frequency electronics. The widespread introduction of high-frequency electronics into everyday life, over the past decade, has generated great interest in hexagonal ferrites. The number of publications devoted to the synthesis of mono- and bisubstituted ferrites noticeably increases every year. Modification of the chemical composition of a ferrite by replacing some of the iron atoms with another element, without changing its structure, leads to a change in physical properties of the material. Variation of the final ferrite properties, by changing its chemical composition, is of interest and is promising for fine tuning the material properties for a specific task. The aim of the present work is to experimentally study the possibility of synthesizing ferrite with a magnetoplumbite structure, in which the iron atoms are partially replaced by the Al and Ti atoms. A review of the scientific literature on this issue showed the absence of publications on ferrites with such a set of substitute elements. The X-ray phase and structural analysis, electron microscopy, and energy-dispersive X-ray spectroscopy were used as research methods in the present study. The article offers the results of an experimental study of the possibility of obtaining bisubstituted M-type ferrite of the BaFe(11.5-x)Ti0.5AlxO19 composition, where x (Al) = 0.1, 0.5, 1. Solid-phase synthesis has been used as a method for preparing samples. This method is devoid of technological difficulties and is promising from the point of view of its scaling for the synthesis of ferrite. The samples have been sintered at three different temperatures: 1300, 1350, and 1400 °C. It is shown that in the temperature range 1300–1400 ° C the formation of monophase samples occurs. The calculation of the parameters of the crystal lattice has been made. The influence of temperature and concentration of a substituting element on the change in the parameters of the crystal lattice of the material has been revealed. The study by the electron microscopy method made it possible to reveal the presence of latent microporosity of the samples.


2011 ◽  
Vol 1316 ◽  
Author(s):  
Y. K. Lai ◽  
Y. Yang ◽  
Y. X. Huang ◽  
Z. Q. Lin ◽  
Y. X. Tang ◽  
...  

ABSTRACTThe present paper describes an unconventional approach to fabricate superhydrophilic-superhydrophobic template on the TiO2nanotube structured film by a combination of electrochemical anodization and photocatalytic lithography. Based on template with extreme wetting contrast, various functional nanostructures micropattern with high resolution have been successfully fabricated. The resultant micropattern has been characterized with scanning electron microscopy, optical microscopy, X-ray photoelectron spectroscopy. It is shown that functional nanostructures can be selectively grown at superhydrophilic areas which are confined by the hydrophobic regions, indicating that the combined process of electrochemically self-assembly and photocatalytic lithography is a very promising approach for constructing well-defined templates for various functional materials growth.


Author(s):  
T. Wichertjes ◽  
E.J. Kwak ◽  
E.F.J. Van Bruggen

Hemocyanin of the horseshoe crab (Limulus polyphemus) has been studied in nany ways. Recently the structure, dissociation and reassembly was studied using electron microscopy of negatively stained specimens as the method of investigation. Crystallization of the protein proved to be possible and X-ray crystallographic analysis was started. Also fluorescence properties of the hemocyanin after dialysis against Tris-glycine buffer + 0.01 M EDTA pH 8.9 (so called “stripped” hemocyanin) and its fractions II and V were studied, as well as functional properties of the fractions by NMR. Finally the temperature-jump method was used for assaying the oxygen binding of the dissociating molecule and of preparations of isolated subunits. Nevertheless very little is known about the structure of the intact molecule. Schutter et al. suggested that the molecule possibly consists of two halves, combined in a staggered way, the halves themselves consisting of four subunits arranged in a square.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Ann Chidester Van Orden ◽  
John L. Chidester ◽  
Anna C. Fraker ◽  
Pei Sung

The influence of small variations in the composition on the corrosion behavior of Co-Cr-Mo alloys has been studied using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and electrochemical measurements. SEM and EDX data were correlated with data from in vitro corrosion measurements involving repassivation and also potentiostatic anodic polarization measurements. Specimens studied included the four alloys shown in Table 1. Corrosion tests were conducted in Hanks' physiological saline solution which has a pH of 7.4 and was held at a temperature of 37°C. Specimens were mechanically polished to a surface finish with 0.05 µm A1203, then exposed to the solution and anodically polarized at a rate of 0.006 v/min. All voltages were measured vs. the saturated calomel electrode (s.c.e.).. Specimens had breakdown potentials near 0.47V vs. s.c.e.


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document