scholarly journals Nutrient Content and Limitation of the Phytoplankton Primary Production in the Estuary Area of the Vodopadnaya River (South Coast of Crimea)

Author(s):  
V. N. Egorov ◽  
◽  
N. I. Bobko ◽  
Yu. G. Marchenko ◽  
S. Ye. Sadogurskiy ◽  
...  

The paper studies eutrophication of the waters of the Yalta water area caused by the Vodopadnaya River runoff and provides assessment of its influence on the characteristics of the phytoplankton primary production limitation by nutrients. The work was performed during 2020.Water samples for hydrochemical analyses were taken in fresh water of the Vodopadnaya River lower reaches and in seawater of its estuarine area. Based on the materials of observations in 2020, the paper characterizes the content of mineral nitrogen compounds (in the form of nitrites, nitrates, ammonium, and total content) and mineral phosphorus in the estuarine area of the Vodopadnaya River, which flows into the Black Sea within the city of Yalta. The influence of atmospheric precipitation on the change in the concentrations of nutrients in the waters of the mouth reach and estuarine front was determined. It was established that nutrient input with the river runoff can shift the nitrogen limitation of the phytoplankton primary production to the phosphorus one. It was shown that river runoff is one of the key factors affecting the degree of eutrophication of sea waters within the recreational zone of Yalta. This should be taken into account when developing strategies for optimizing the urban environment and recreational and tourist infrastructure of the region.

Science ◽  
2020 ◽  
Vol 369 (6500) ◽  
pp. 198-202 ◽  
Author(s):  
K. M. Lewis ◽  
G. L. van Dijken ◽  
K. R. Arrigo

Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.


2017 ◽  
Vol 14 ◽  
pp. 39-47
Author(s):  
Natalya S. Chelyadina ◽  
Mark A. Popov ◽  
Elena V. Lisitskaya ◽  
Natalya V. Pospelova ◽  
Vladimir N. Popovichev

The results of the long-term monitoring of coastal waters off the Heracles Peninsula (Crimea, the Black Sea) are presented. The abiotic and biotic parameters, indicating the ecological condition of the coastal zone, have been studied. The following parameters have been measured by standard methods: water temperature, illuminance, concentration of particulate matter, organic matter, primary production, intensity of biotic reproduction of particulate matter, phytoplankton and meroplankton species diversity, abundance, and biomass, as well as shell morphometrics and sex ratio in mussel Mytilus galloprovincialis Lam. It has been found that upwelling water circulation is typical for the coastal waters off the Heracles Peninsula. The mean annual sea surface temperature over the study period 2000-2016 proved to be 2.7°С higher than that in the early 20th century. The maximum values of phytoplankton primary production are associated with inner waters of coves and with increased Twater and Еmax values. A reduction in phytoplankton and meroplankton diversity and a dominance of eurybiontic species have been recorded from the waters subject to anthropogenic impacts. The most pronounced shift of sex ratio toward predominance of M. galloprovincialis males and a high mussel Н/L shell index are observed in waters with increased technogenic load. The taxonomic structure of phytoplankton and meroplankton, sex ratio, and morphometric parameters of bivalves are the sensitive tools of ecological monitoring to assess the condition of the surrounding aquatic environment.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


Author(s):  
Akira Umehara ◽  
Akira Umehara ◽  
Satoshi Asaoka ◽  
Satoshi Asaoka ◽  
Naoki Fujii ◽  
...  

In enclosed water areas, organic matters are actively produced by phytoplankton due to abundant nutrient supply from the rivers. In our study area of the semi-enclosed Hiroshima Bay, oyster farming consuming high primary production has been developed since the 1950s, and the oyster production of Hiroshima prefecture have had the largest market share (ca. 60%) in Japan. In this study, species composition of phytoplankton, primary production, and secondary production of net zooplanktons and oysters were determined seasonally at seven stations in the bay between November 2014 and August 2015. In the bay, diatoms including Skeletonema costatum dominated during the period of the study. The primary productions markedly increased during summer (August), and its mean values in the northern part of the bay (NB) and the southern part (SB) were 530 and 313 mgC/m2/d, respectively. The productions of net zooplankton and oyster increased during the warm season, and its mean values in the NB were 14 and 1.2 mgC/m2/d, and in SB were 28 and 0.9 mgC/m2/d, respectively. The energy transfer efficiencies from the primary producers to the secondary producers in the NB and SB were 2.8% and 9.1%, respectively. However, the transfer efficiency to the oysters was approximately 0.3% in the bay. This study clearly showed the spatial difference of the productions and transfer efficiencies, and the low contribution of the production of oysters in secondary productions in Hiroshima Bay.


Author(s):  
Dmitry Elkin ◽  
Dmitry Elkin ◽  
Andrey Zatsepin ◽  
Andrey Zatsepin

Laboratory investigation of eddy formation mechanism due to spatially non-uniform wind impact was fulfilled. Experiment was provided in a cylindrical and a square form tank filled with homogeneous or stratified fluid and displaced on a rotating platform. In the absence of the platform rotation, an impact of the single air jet lead to the formation of a symmetric vortex dipole structure that occupied the whole water area in the tank. In the presence of the platform rotation, a compact anticyclonic eddy was formed in a part of the dipole with anticyclonic vorticity, while in a part with cyclonic vorticity no any compact eddy was observed. The laboratory results were successfully compared with the field observation results fulfilled in the at the Black Sea coastal zone near Gelendzhik.


Author(s):  
Alla Savenko ◽  
Alla Savenko ◽  
Oleg Pokrovsky ◽  
Oleg Pokrovsky ◽  
Irina Streletskaya ◽  
...  

The distribution of dissolved chemical elements (major ions, nutrients, and trace elements) in the Yenisei River estuary and adjacent water area in 2009 and 2010 are presented. These results were compared to the data obtained during previous hydrochemical studies of this region. The transport of major cations (Na, K, Mg, Ca) and some trace elements (Rb, Cs, Sr, B, F, As, Mo, U) in the estuary follows conservative mixing. Alkalinity also belongs to conservative components, however this parameter exhibits substantial spatial heterogeneity caused by complex hydrological structure of the Yenisei Bay and adjoining part of the Kara Sea formed under the influence of several sources of desalination and salty waters inflow. Concentrations of Pmin, Si, and V in the desalinized waters of photic layer decrease seaward owing to uptake by phytoplankton. The losses of these elements reach 30–57, 30, and 9% of their supply by river runoff, respectively. The content of dissolved phosphates and vanadium in the intermediate and near-bottom layers of the Yenisei River estuary strongly increases with salinity due to regeneration of precipitated organic matter, whereas silica remineralization is much less pronounced. Barium is characterized by additional input of dissolved forms in the mixing zone in the quantity comparable to that carried out by river runoff. This may be caused by its desorption from river suspended matter due to ion exchange. The transport of dissolved Al and Mn in the estuarine zone is probably controlled by the coagulation and flocculation of organic and organomineral colloids, which is indicated by a decrease in the concentration of these elements at the beginning of the estuary (31 and 56%, respectively) followed by a stable concentration further seaward.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


2018 ◽  
Vol 44 (3) ◽  
pp. 240-247 ◽  
Author(s):  
V. N. Egorov ◽  
V. N. Popovichev ◽  
S. B. Gulin ◽  
N. I. Bobko ◽  
N. Yu. Rodionova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document