scholarly journals Thermal, Structural and Morphology Studies of PEO-LICF3SO3-DBP-ZrO2 Nanocomposite Polymer Electrolytes

2021 ◽  
Vol 1 (1) ◽  
pp. 1-17
Author(s):  
Siti Mariah Mohd Yasin ◽  
Mohd Rafie Johan

This work represents thermal study of PEO-based polymer electrolyte films that were prepared by the solution cast technique. The melting temperature Tm, glass transition temperature Tg and degree of crystallinity χc were measured by diffraction scanning calorimetry (DSC). Thermogravimetric (TGA) was used to determine the initial and final degradation temperatures. The structural was also performed to characterize the vibrational wavelength and phase characteristic (crystalline/amorphous). While the morphological study was emphasized to examine the features appearance for pure polymer electrolyte system as well as after addition salt, plasticizer and filler. The zirconium oxide particles were measured after the milling process by using the transmission electron microscopy (TEM), and the particles obtained in the range of 9 – 54 nanometer size.

2019 ◽  
Vol 16 (2) ◽  
pp. 136-141
Author(s):  
N. Nagaraj ◽  
P. Mohan Babu ◽  
K. V. Ramesh Babu

Poly (vinyl alcohol) (PVA) – based solid electrolyte films with potassium thiocyanate (KSCN) were prepared by solution-cast technique. The pure and KSCN- doped PVA films have been investigated for the charge transport mechanism in the polymer electrolyte system by using the DC conductivity (The composition dependence and temperature dependence in 300-385K range) and transference number measurements. The graphs related to conductivity – temperature shows that an increase in conductivity with respect to rise in the temperature. At room temperature, the conductivity of the (PVA+KSCN) electrolyte is 102 times greater than that of pure PVA. The transference number data exhibit that the charge transport in this polymer electrolyte system is predominantly due to ions. The ionic transference numbers (tion) lies in the range of 0.92 to 0.99 for the films of PVA with KSCN in the wt% ratios (90:10), (80:20) and (70:30).


2015 ◽  
Vol 87 (11-12) ◽  
pp. 1085-1097 ◽  
Author(s):  
Li Wang ◽  
Stefan Baudis ◽  
Karl Kratz ◽  
Andreas Lendlein

AbstractA versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)2 as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto- and thermo-sensitive polymer networks were prepared via two subsequent surface-initiated ring-opening polymerizations (ROPs) with ω-pentadecalactone and ε-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85°C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and 1H-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(ω-pentadecalactone) (OPDL) and oligo(ε-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few ω-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)2 was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 49 ◽  
Author(s):  
Eleonora Dal Lago ◽  
Carlo Boaretti ◽  
Francesca Piovesan ◽  
Martina Roso ◽  
Alessandra Lorenzetti ◽  
...  

The substitution of virgin resins by recycled ones is a worldwide tendency that is supported by the fluctuation of oil prices and the transition to a circular economy. Polymeric blends have been intensively studied because of their ability to provide tailored properties for particular applications. However, in their design phases, the issue of end-life re-use had not been well addressed, and now difficulties in their recycling are arising. In this study, we investigated the effect of three different compatibilizers: two chain extenders (CEs), (1) a styrene-acrylic oligomer (ESAo), and (2) methylene diphenyl diisocyanate (MDI) and an impact strength modifier, (3) an ethylene copolymer (EMAco), for the recycle of a post-industrial polycarbonate/polyethylene terephthalate (PC/PET) blend. The materials were prepared by reactive extrusion and characterized by intrinsic viscosity (IV) measurements, mechanical tests, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy analysis (FTIR), and transmission electron microscopy (TEM). The introduction of each additive has been demonstrated to improve the compatibility between PET and PC in the post-industrial blend, leading to enhanced mechanical properties. The IV measurements increased to values that were comparable to the virgin material. In addition, CEs affected the crystallization of PET (as they reduced the degree of crystallinity), while EMAco acted as a nucleating agent. Morphological analysis enabled confirming the compatibilization effects induced by the tested additives.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4240
Author(s):  
Yatim Lailun Ni’mah ◽  
Zakkiyyah Hidayatul Muhaiminah ◽  
Suprapto Suprapto

The synthesize of solid polymer electrolyte (SPE) based on polyethylene oxide (PEO), NaClO4 and nano-SiO2 was carried out by solution cast technique. Nano-SiO2 was synthesized from sugarcane bagasse using sol-gel method. FTIR analysis was carried out to investigate the bonding between nano-SiO2 and PEO/NaClO4. The morphology of the SPE was characterized using SEM. XRD and DSC analysis showed that SPE crystallinity decreased as nano-SiO2 concentration was increased. Mechanical analyses were conducted to characterize the SPE tensile strength and elongation at break. EIS analysis was conducted to measure SPE ionic conductivity. The PEO/NaClO4 SPE with the addition of 5% nano-SiO2 from sugarcane bagasse at 60 °C produced SPE with the highest ionic conductivity, 1.18 × 10−6 S/cm. It was concluded that the addition of nano-SiO2 increased ionic conductivity and interface stability at the solid polymer electrolyte-PEO/NaClO4.


2020 ◽  
pp. 089270572093075
Author(s):  
Jitender Paul Sharma ◽  
Neelam Guleria

In the present work, nanocomposite polymer electrolyte films were prepared by solution casting technique using nanosized fumed silica to polyethylene oxide (PEO)-based polymer electrolytes containing ammonium bifluoride (NH4HF2). The ionic conductivity of 1.19 × 10−5 S cm−1 has been observed at room temperature (25°C) for 3 wt% fumed silica in PEO-10 wt% NH4HF2 polymer electrolytes after which the conductivity was observed to decrease. Furthermore, the addition of high dielectric constant plasticizer propylene carbonate (PC) in the optimized composition of nanocomposite polymer electrolytes has increased the number of charge carriers by the large dissolution of ionic salt, amorphous content, and hence the ionic conductivity. Maximum ionic conductivity obtained at room temperature was found to be 1.55 × 10−4 S cm−1 in the case of PEO-10 wt% NH4HF2-3 wt% fumed silica-0.3 (ml) PC polymer electrolytes which is five orders of magnitude higher than that of the polymer host material. Temperature-dependent ionic conductivity, activation energy, and dielectric constant studies have been described for all the compositions of polymer electrolytes. Ionic conductivity and dielectric constant studies were determined from impedance data. Polymer electrolytes containing both fumed silica and PC highlight that there is no phase transition in the polymer electrolyte and temperature dependence of ionic conductivity in the temperature range is of almost Arrhenius type. The lowest activation energy value for the highest conducting polymer electrolyte was found to be 0.172 eV. Change in melting temperature, % crystallinity ( χ c), and mechanical properties have also been observed in polymer electrolytes containing fumed silica as well as PC as studied by Differential Scanning Calorimetry/Thermogravimetric Analysis (DSC/TGA) and universal testing machine, respectively.


2012 ◽  
Vol 730-732 ◽  
pp. 739-744 ◽  
Author(s):  
Petr Urban ◽  
Francisco Gomez Cuevas ◽  
Juan M. Montes ◽  
Jesus Cintas

The amorphization process by mechanical alloying in the Fe-Si alloy system has been studied. High energy ball milling has been applied for alloys synthesis. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to monitor the structural and phase transformations through the different stages of milling. The addition of amorphous boron in the milling process and the increase of the milling time were used to improve the formation of the amorphous phase. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of equilibrium intermetallic compounds.


2015 ◽  
Vol 1107 ◽  
pp. 217-222 ◽  
Author(s):  
Ahmad Fairoz Aziz ◽  
Khuzaimah Nazir ◽  
Siti Fadzilah Ayub ◽  
Rosnah Zakaria ◽  
Muhd Zu Azhan Yahya ◽  
...  

Methyl-grafted natural rubber (MG30) was treated with N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) to enhance it anti-aging properties. The treated MG30 was used as polymer electrolyte by incorporating lithium trifluoromethane sulfonate (LiTF) through solution-cast technique. The impedance behavior of the sample has been carried out by analyzing the dielectric permittivity, dissipation factor, dielectric modulus and ionic conductivity as a function of temperature at different frequencies through impedance spectroscopy. Keywords: Methyl-grafted natural rubber, polymer electrolyte, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, ionic conductivity, dielectric.


2012 ◽  
Vol 33 (12) ◽  
pp. 2195-2200 ◽  
Author(s):  
Nirali Gondaliya ◽  
D.K. Kanchan ◽  
Poonam Sharma ◽  
Manish S. Jayswal

Sign in / Sign up

Export Citation Format

Share Document