Impedance Behavior of Treated Methyl-Grafted Natural Rubber Polymer Electrolytes

2015 ◽  
Vol 1107 ◽  
pp. 217-222 ◽  
Author(s):  
Ahmad Fairoz Aziz ◽  
Khuzaimah Nazir ◽  
Siti Fadzilah Ayub ◽  
Rosnah Zakaria ◽  
Muhd Zu Azhan Yahya ◽  
...  

Methyl-grafted natural rubber (MG30) was treated with N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) to enhance it anti-aging properties. The treated MG30 was used as polymer electrolyte by incorporating lithium trifluoromethane sulfonate (LiTF) through solution-cast technique. The impedance behavior of the sample has been carried out by analyzing the dielectric permittivity, dissipation factor, dielectric modulus and ionic conductivity as a function of temperature at different frequencies through impedance spectroscopy. Keywords: Methyl-grafted natural rubber, polymer electrolyte, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, ionic conductivity, dielectric.

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4115 ◽  
Author(s):  
Aimi Mahirah Zulkifli ◽  
Nur Izzah Aqilah Mat Said ◽  
Shujahadeen Bakr Aziz ◽  
Elham Mohammed Ali Dannoun ◽  
Shameer Hisham ◽  
...  

In the present work, phthaloyl chitosan (PhCh)-based gel polymer electrolytes (GPEs) were prepared using dimethylformamide (DMF) as a solvent, ethyl carbonate (EC) as a co-solvent, and a set of five quaternaries of potassium iodide (KI) as a doping salt, which is a mixed composition of iodine (I2). The prepared GPEs were applied to dye-sensitized solar cells (DSSC) to observe the effectiveness of the electrolyte, using mesoporous TiO2, which was sensitized with N3 dye as the sensitizer. The incorporation of the potassium iodide-based redox couple in a polymer electrolyte is fabricated for dye-sensitized solar cells (DSSCs). The number of compositions was based on the chemical equation, which is 1:1 for KI:I2. The electrical performance of prepared GPE systems have been assessed using electrical impedance spectroscopy (EIS), and dielectric permittivity. The improvement in the ionic conductivity of PhCh-based GPE was observed with the rise of salt concentration, and the maximum ionic conductivity (4.94 × 10−2 S cm−1) was achieved for the 0.0012 mol of KI:I2. The study of dielectric permittivity displays that ions with a high dielectric constant are associated with a high concentration of added ions. Furthermore, the gel polymer electrolyte samples were applied to DSSCs to detect the conversion effectiveness of the electrolytes. For electrolytes containing various content of KI:I2 the highest conversion efficiency (η%) of DSSC obtained was 3.57% with a short circuit current density (Jsc) of 20.33 mA cm−2, open-circuit voltage (Voc) of 0.37 V, fill factor (FF) of 0.47, as well as a conductivity of 2.08 × 10−2 S cm−1.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4240
Author(s):  
Yatim Lailun Ni’mah ◽  
Zakkiyyah Hidayatul Muhaiminah ◽  
Suprapto Suprapto

The synthesize of solid polymer electrolyte (SPE) based on polyethylene oxide (PEO), NaClO4 and nano-SiO2 was carried out by solution cast technique. Nano-SiO2 was synthesized from sugarcane bagasse using sol-gel method. FTIR analysis was carried out to investigate the bonding between nano-SiO2 and PEO/NaClO4. The morphology of the SPE was characterized using SEM. XRD and DSC analysis showed that SPE crystallinity decreased as nano-SiO2 concentration was increased. Mechanical analyses were conducted to characterize the SPE tensile strength and elongation at break. EIS analysis was conducted to measure SPE ionic conductivity. The PEO/NaClO4 SPE with the addition of 5% nano-SiO2 from sugarcane bagasse at 60 °C produced SPE with the highest ionic conductivity, 1.18 × 10−6 S/cm. It was concluded that the addition of nano-SiO2 increased ionic conductivity and interface stability at the solid polymer electrolyte-PEO/NaClO4.


2015 ◽  
Vol 12 (2) ◽  
pp. 83
Author(s):  
Siti Fadzilah Ayub ◽  
Khuzaimah Nazir ◽  
Ahmad Fairuz Aziz ◽  
Siti Irma Yuana Saaid ◽  
Muhd Zu Azhan Yahya ◽  
...  

This paper presents on ionic conductivity of MG30-PEMA blend solid polymer electrolytes (SPEs) prepared by solution cast technique. The analysis has shown that conductivity increases with the increasing salt composition. It is observed via x-ray diffraction analysis that the crystallinity of the sample decreased with the amount of salt composition as expected It is also observed that the dielectric value increases with increasing amount of LiCF3SO3 in the sample. Surface morphology revealed that ion aggregation occurred after optimum conductivity which has lowered the conductivity.


2016 ◽  
Vol 705 ◽  
pp. 150-154
Author(s):  
Nik Aisyah Suraya Nik Zulkepeli ◽  
Tan Winie ◽  
R.H.Y. Subban

Polymer electrolyte films of poly (vinyl) chloride (PVC) as polymer host doped with ionic liquid 1-butyl-3-methylimidazolium trifluoromethasulfonate (BMIMCF3SO3) were prepared by solution cast technique. Ionic conductivity was studied for 95 wt.% and 80 wt.% PVC by using Impedance Spectroscopy (IS). Arrhenius and Vogel-Tamman Fulcher (VTF) behavior were observed before and after Tg of the systems. Fourier Transform Infrared (FTIR) study confirmed that complexation occurred between PVC and BMIMCF3SO3.


2015 ◽  
Vol 12 (2) ◽  
pp. 83
Author(s):  
Siti Fadzilah Ayub ◽  
Khuzaimah Nazir ◽  
Ahmad Fairuz Aziz ◽  
Siti Irma Yuana Sheikh Mohd Saaid ◽  
Muhd Zu Azhan Yahya ◽  
...  

This paper presents on ionic conductivity of MG30-PEMA blend solid polymer electrolytes (SPEs) prepared by solution cast technique. The analysis has shown that conductivity increases with the increasing salt composition. It is observed via x-ray diffraction analysis that the crystallinity of the sample decreased with the amount of salt composition as expected It is also observed that the dielectric value increases with increasing amount of LiCF3SO3 in the sample. Surface morphology revealed that ion aggregation occurred after optimum conductivity which has lowered the conductivity.


2012 ◽  
Vol 626 ◽  
pp. 211-214
Author(s):  
W.G. Chong ◽  
Zurina Osman ◽  
Lisani Othman ◽  
Khairul Bahiyah Md. Isa

The conducting polymer electrolyte films composed of polyacrylonitrile (PAN) as the host polymer, LiCF3SO3 and NaCF3SO3 as inorganic salts and ethylene carbonate (EC) as plasticizer were prepared by the solution cast technique. The conductivities of the films were characterized by impedance spectroscopy. On addition of more than 14 wt% of salt, the NaCF3SO3-containing PAN films exhibited higher ionic conductivity than the LiCF3SO3-containing PAN films. The values of the dielectric constant, εr and dielectric loss, εi increase as frequency decreases at room temperature. The temperature dependence of the conductivity obeys Arrhenius relation in the temperature range of 303 K to 353 K.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sk. Shahenoor Basha ◽  
M. C. Rao

Blend polymer electrolytes were prepared with different wt% compositions of [PVA/PVP-MgCl2·6H2O] : x% using solution cast technique. Structural, morphological, vibrational, thermal, and ionic conductivity and electrochemical properties were studied on the prepared polymer films. XRD revealed the crystalline nature of the polymer electrolyte films. The morphology and the degree of roughness of the prepared films were analyzed by SEM. FTIR and Raman studies confirmed the chemical complex nature of the ligands, interlinking bond formation between the blend polymers and the dopant salt. The glass transition temperature (Tg) of polymer electrolytes was confirmed by DSC studies. Ionic conductivity measurements were carried out on the prepared films in the frequency ranging between 5000 Hz and 50000 KHz and found to be maximum (2.42 × 10−4 S/cm) for the prepared film with wt% composition 35PVA/35PVP : 30MgCl2·6H2O at room temperature. The electrochemical studies were also performed on the prepared films. The galvanostatic charge/discharge performance was carried out from 2.9 to 4.4 V for the configuration Mg+/(PVA/PVP + MgCl2·6H2O)/(I2 + C + electrolyte).


2020 ◽  
pp. 152808372097062
Author(s):  
Muhammad Yameen Solangi ◽  
Umair Aftab ◽  
Muhammad Ishaque ◽  
Aqeel Bhutto ◽  
Ayman Nafady ◽  
...  

Solid polymer electrolytes (SPEs) are the best choice to replace liquid electrolytes in supercapacitors, fuel cells, solar cells and batteries. The main challenge in this filed is the ionic conductivity and thermal stability of SPEs which is still not up to mark, therefore more investigations are needed to address these issues. In this study, PVA/salt based SPEs was fabricated using both solution cast and electro-spinning methods to probe the effect of different salts such as (NaCl, KCl and KI) and their concentrations on the ionic conductivity. Scanning electron microscopy (SEM) x and Fourier Transform Infra-Red (FTIR) have been employed to study the morphology as well as the different functional groups of SPEs, respectively. It was noted that small addition of NaCl, KCl and KI salts in SPEs dramatically increased the ionic conductivity to 5.95×10−6, 5.31×10−6 and 4.83×10−6 S/cm, respectively. Importantly, the SPEs obtained with NaCl via electro-spinning have higher ionic conductivity (5.95×10−6 S/cm) than their casted SPEs (1.87×10−6 S/cm). Thermal stability was also studied at two different temperatures i.e. 80 °C and 100 °C. The weight loss percentage of electrospun SPEs have zero percent weight loss than the solution based SPEs. The combined results clearly indicated that the nature of salt, concentration and fabrication process play a vital role in the ionic conductivity. Also, the NaCl salt with low molecular weight at low concentrations shows an enhanced ionic conductivity.


2015 ◽  
Vol 6 (7) ◽  
pp. 1052-1055 ◽  
Author(s):  
Suting Yan ◽  
Jianda Xie ◽  
Qingshi Wu ◽  
Shiming Zhou ◽  
Anqi Qu ◽  
...  

A solid polymer electrolyte fabricated using ion containing microgels manifests high ionic conductivity for potential use in lithium batteries.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-17
Author(s):  
Siti Mariah Mohd Yasin ◽  
Mohd Rafie Johan

This work represents thermal study of PEO-based polymer electrolyte films that were prepared by the solution cast technique. The melting temperature Tm, glass transition temperature Tg and degree of crystallinity χc were measured by diffraction scanning calorimetry (DSC). Thermogravimetric (TGA) was used to determine the initial and final degradation temperatures. The structural was also performed to characterize the vibrational wavelength and phase characteristic (crystalline/amorphous). While the morphological study was emphasized to examine the features appearance for pure polymer electrolyte system as well as after addition salt, plasticizer and filler. The zirconium oxide particles were measured after the milling process by using the transmission electron microscopy (TEM), and the particles obtained in the range of 9 – 54 nanometer size.


Sign in / Sign up

Export Citation Format

Share Document