scholarly journals Biofilm Production of Leptospira spp. Strains

2018 ◽  
Vol 46 (1) ◽  
pp. 5
Author(s):  
Dayane Olímpia Gomes ◽  
Laura Gonçalves da Silva Chagas ◽  
Gabriela Bim Ramos ◽  
Andreia Zago Ciuffa ◽  
Laís Miguel Rezende ◽  
...  

Background: Leptospirosis is a zoonosis that affects many species of mammals and occurs endemically in Brazil. The biofilm matrix provides structure and protection to the biofilm cells working as a physical barrier to antibiotic agents, which are attached or consumed by the matrix components. However, this attribute varies according to the matrix, antimicrobial agent and biofilm age. Leptospira may change morphologically according to environmental conditions, including cell aggregation and biofilm formation. Leptospira can colonize the ducts of kidney from hosts for a long time, forming a biofilm, which is believed to be an important factor for their maintenance in animals and in the environment. Thus, the objective of this research was to determine the biofilm formation capacity of four strains of Leptospira interrogans.Materials, Methods & Results: The strains were typified by WHO/FAO/OIE and National Collaborating Center for Reference and Research on Leptospirosis (Kit Biomedical Research, Amsterdam, Netherlands). Leptospira interrogans strains, two isolated from cattle and two isolated from dogs were biofilms tested for adhesion on polystyrene plates, extracellular matrix composition and confocal microscopy. In the plating adhesion test, the suspension was inoculated into 96-well sterile polystyrene microplates with flat bottom at a ratio of 1:200 in EMJH medium, followed by 24 h incubation at 28°C, with medium renewal after 12 h. After this period the wells were washed three times with sterile PBS and following incubation; the plates were dried in the oven at 60°C for 30 min and added 200 μL of 1% violet crystal for five min. Subsequently, the plates were washed with distilled water, after complete removal, 200 μL of acetic acid 33% was added and the readings were performed at 570 nm in the ELISA reader. The proteins and polysaccharides were quantified in a scraped pooled sample diluted in 0.85% sterile saline solution to achieve an optimal amount for testing used reagents of the BCA kit. The polysaccharide content was determined by adding into a tube, an aliquot of 0.5 mL from the pooled sample, 0.5 mL of phenol and then immediately 2.5 mL of sulfuric acid. The solution was homogenized and left to react for 15 min at room temperature. The reading was performed at 490 nm in ELISA reader. The strains were compared regarding polysaccharides and protein matrices using analysis of variance (ANOVA) and Tukey test. At confocal microscopy the strains were incubated with the tested polypropylene material for 24 h. The materials were washed with sterile phosphate buffer and stained with propidium iodide. The reading was performed using a Laser Scanning Confocal Microscope (Zeiss 710) with laser excitation (488 nm) and 580-680 nm emission filters for propidium iodide (red marking). All strains displayed strong adherence on microplate and the amount of polysaccharides in biofilm was not statistically different among the studied strains, but the amount of protein was significantly different in strain 4 (P > 0.5). The confocal microscopy showed the adherence of the Leptospira spp. strains to polypropylene material after washing.Discussion: Biofilm production plays an important role in the maintenance of a chronic infection by Leptospira interrogans with renal colonization. The exopolysaccharide (EPS) has various functions, such as checking insolubility in water; giving the three-dimensional conformation of the biofilm; protecting cells from physical (mechanical action, irradiation and temperature variations), chemical.

2021 ◽  
Author(s):  
Swetha Kassety ◽  
Stefan Katharios-Lanwermeyer ◽  
George A. O’Toole ◽  
Carey D. Nadell

Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best characterized model organisms used to study the mechanisms of biofilm formation, while also representing two distinct lineages of P. aeruginosa . Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, the P. aeruginosa PA14 is better able to invade pre-formed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. Importance Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naïve surface, while PA14 is more effective in colonizing a pre-formed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Isis Regina Grenier Capoci ◽  
Patrícia de Souza Bonfim-Mendonça ◽  
Glaucia Sayuri Arita ◽  
Raphaela Regina de Araújo Pereira ◽  
Marcia Edilaine Lopes Consolaro ◽  
...  

Vulvovaginal candidiasis (VVC) is one of the most common genital infections in women. The therapeutic arsenal remains restricted, and some alternatives to VVC treatment are being studied. The present study evaluated the influence of a propolis extractive solution (PES) on biofilm production byCandida albicansisolated from patients with VVC. Susceptibility testing was used to verify the minimum inhibitory concentration (MIC) of PES, with fluconazole and nystatin as controls. The biofilm formation of 29 vaginal isolates ofC. albicansand a reference strain that were exposed to PES was evaluated using crystal violet staining. Colony-forming units were evaluated, proteins and carbohydrates of the matrix biofilm were quantified, and scanning electron microscopy was performed. The MIC of PES ranged from 68.35 to 546.87 μg/mL of total phenol content in gallic acid. A concentration of 546.87 μg/mL was able to cause the death of 75.8% of the isolates. PES inhibited biofilm formation byC. albicansfrom VVC. Besides antifungal activity, PES appears to present important antibiofilm activity on abiotic surfaces, indicating that it may have an additional beneficial effect in the treatment of VVC.


2020 ◽  
Author(s):  
Fabien Lamret ◽  
Jennifer Varin-Simon ◽  
Sophie Gangloff ◽  
Fany Reffuveille

<p>Bone and joint infections linked to implanted materials are mostly due to Staphylococcus aureus. Deciphering the biofilm structure appears to be a promising strategy to develop antibiofilm molecules in order to curb infection occurrence and the bacterial recurrence. Indeed, the characterization of biofilm architecture and physiology could help to find new therapeutic targets through notable quantification of the matrix main components. Our hypothesis is that the very complex and interconnected bone microenvironment influences the bacterial adhesion and biofilm maturation and so its composition.</p> <p>To identify the main factors influencing biofilm formation in the bone microenvironment, we determined biofilm biomass and the number of live adhered bacteria in a static model, completed with microscopy approaches to support our results. Different factors of bone microenvironment were tested: starvation, low oxygen rate, excess of magnesium, and presence of bone cell products. Our first results showed that MSSA or MRSA strains did not have the same behaviors under the tested conditions. However, for both types of strains, excess of magnesium combined to paucity of amino acids and oxygen increased the most the proportion of adhered Staphylococcus aureus (a 6 to 43 fold-increase, p = < 0.01). But biofilm biomass quantification and bacterial adhesion results showed divergent profiles leading us to think that matrix could be involved in such contrasts. Scanning electron microscopy highlighted several structures of matrix produced by these bacteria: well-known slime aspect, but also fibrous appearance, and no matrix production was revealed under some conditions. Indeed, all strains produced few matrix when cultured with control medium and oxygenated condition. Only CIP 53.154 strain built a strong slime-like matrix in response to oxygen depletion. However, both MSSA CIP 53.154 and SH1000 strains developed fibrous structures under anaerobic conditions associated with amino acid starvation, high magnesium concentration with or without glucose. MRSA USA300 strain did not seem to produce a matrix under our conditions, which is supported by the literature. Further investigations of the biofilm matrix are needed to conclude on the matrix nature, which surrounds bacteria under our conditions.</p> <p>The bone microenvironment is complex but our results show that the parameters that mimicked this specific environment influenced the bacterial adhesion and probably the biofilm matrix composition of several strains of Staphylococcus aureus. Further investigations will help to understand how the different factors influence biofilm formation through quantification of the matrix main components by fluorescence microscopy and enzyme digestion. Our final aim is to develop an in vitro model mimicking this specific microenvironment in order to screen different antimicrobial molecules, which could target the biofilm matrix.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Opeyemi U. Lawal ◽  
Marta Barata ◽  
Maria J. Fraqueza ◽  
Peder Worning ◽  
Mette D. Bartels ◽  
...  

Biofilm formation has been shown to be critical to the success of uropathogens. Although Staphylococcus saprophyticus is a common cause of urinary tract infections, its biofilm production capacity, composition, genetic basis, and origin are poorly understood. We investigated biofilm formation in a large and diverse collection of S. saprophyticus (n = 422). Biofilm matrix composition was assessed in representative strains (n = 63) belonging to two main S. saprophyticus lineages (G and S) recovered from human infection, colonization, and food-related environment using biofilm detachment approach. To identify factors that could be associated with biofilm formation and structure variation, we used a pangenome-wide association study approach. Almost all the isolates (91%; n = 384/422) produced biofilm. Among the 63 representative strains, we identified eight biofilm matrix phenotypes, but the most common were composed of protein or protein–extracellular DNA (eDNA)–polysaccharides (38%, 24/63 each). Biofilms containing protein–eDNA–polysaccharides were linked to lineage G and environmental isolates, whereas protein-based biofilms were produced by lineage S and infection isolates (p < 0.05). Putative biofilm-associated genes, namely, aas, atl, ebpS, uafA, sasF, sasD, sdrH, splE, sdrE, sdrC, sraP, and ica genes, were found with different frequencies (3–100%), but there was no correlation between their presence and biofilm production or matrix types. Notably, icaC_1 was ubiquitous in the collection, while icaR was lineage G-associated, and only four strains carried a complete ica gene cluster (icaADBCR) except one that was without icaR. We provided evidence, using a comparative genomic approach, that the complete icaADBCR cluster was acquired multiple times by S. saprophyticus and originated from other coagulase-negative staphylococci. Overall, the composition of S. saprophyticus biofilms was distinct in environmental and clinical isolates, suggesting that modulation of biofilm structure could be a key step in the pathogenicity of these bacteria. Moreover, biofilm production in S. saprophyticus is ica-independent, and the complete icaADBCR was acquired from other staphylococci.


mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
E. G. Dominguez ◽  
R. Zarnowski ◽  
H. L. Choy ◽  
M. Zhao ◽  
H. Sanchez ◽  
...  

ABSTRACT Candida auris has emerged as an outbreak pathogen associated with high mortality. Biofilm formation and linked drug resistance are common among Candida species. Drug sequestration by the biofilm matrix accounts for much of the antifungal tolerance. In this study, we examine the biofilm matrix composition and function for a diverse set of C. auris isolates. We show that matrix sequesters nearly 70% of the available triazole antifungal. Like the biofilms formed by other Candida spp., we find that the matrix of C. auris is rich in mannan-glucan polysaccharides and demonstrate that their hydrolysis reduces drug tolerance. This biofilm matrix resistance mechanism appears conserved among Candida species, including C. auris. IMPORTANCE Candida auris is an emerging fungal threat linked to poor patient outcomes. The factors responsible for this apparent increase in pathogenicity remain largely unknown. Biofilm formation has been suggested as an important factor for persistence of this organism in patients and the environment. Our findings reveal one mechanism utilized by C. auris to evade the effect of triazole antifungal therapy during biofilm growth. The conservation of the protective biofilm matrix among Candida spp. suggests that is a promising pan-fungal Candida biofilm drug target.


Author(s):  
S. R. Warke ◽  
V. C. Ingle ◽  
N. V. Kurkure ◽  
P. A. Tembhurne ◽  
Minakshi Prasad ◽  
...  

Listeria monocytogenes, an opportunistic food borne pathogen can cause serious infections in immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments.The biofilm transfers contamination to food products and impose risk to public health. In the present study biofilm producing ability of L. monocytogenes isolates were investigated phenotypically and genotypically by microtiter assay and multiplex PCR, respectively. Out of 38 L. monocytogenes isolates 14 were recovered from animal clinical cases, 12 bovine environment and 12 from milk samples. A total of 3 (21.42%) clinical, 2 (16.66%) environment and 3 (25%) milk samples respectively, revealed biofilm production in microtiter assay. Cumulative results showed that 23 (60.52%) out of 38 strains of L. monocytogenes were positive for luxS and flaA gene and 1 (2.63%) was positive only for the flaA gene.


2014 ◽  
Vol 17 (2) ◽  
pp. 321-329 ◽  
Author(s):  
K. Wolska ◽  
P. Szweda ◽  
K. Lada ◽  
E. Rytel ◽  
K. Gucwa ◽  
...  

AbstractThe molecular-typing strategy, ERIC-PCR was used in an attempt to determine the genomic relationship of 28 P. aeruginosa strains isolated from faeces of healthy bovine, bovine mastitis and from faeces of hospital patients as well as from environment. ERIC-PCR fingerprinting revealed large molecular differentiation within this group of isolates. Twenty two out of 28 strains tested generated unique patterns of DNA bands and only three genotypes consisted of two isolates each were identified. We also tested the P. aeruginosa isolates for their ability to form a biofilm on abiotic surfaces including polyvinylchloride and polystyrene. Different biofilm-forming abilities were demonstrated among strains; however, most of them (64.3%) showed moderate-biofilm forming ability. The strains with increased swimming and twitching motility displayed elevated biofilm formation. However, a negative correlation was found between slime and initial biofilm production. On the basis of the results obtained, we suggest that there are no major differences in phenotypic properties between P. aeruginosa strains isolated from different sources


2019 ◽  
Vol 98 (7) ◽  
pp. 739-745 ◽  
Author(s):  
C. Cugini ◽  
M. Shanmugam ◽  
N. Landge ◽  
N. Ramasubbu

The oral cavity contains a rich consortium of exopolysaccharide-producing microbes. These extracellular polysaccharides comprise a major component of the oral biofilm. Together with extracellular proteins, DNA, and lipids, they form the biofilm matrix, which contributes to bacterial colonization, biofilm formation and maintenance, and pathogenesis. While a number of oral microbes have been studied in detail with regard to biofilm formation and pathogenesis, the exopolysaccharides have been well characterized for only select organisms, namely Streptococcus mutans and Aggregatibacter actinomycetemcomitans. Studies on the exopolysaccharides of other oral organisms, however, are in their infancy. In this review, we present the current research on exopolysaccharides of oral microbes regarding their biosynthesis, regulation, contributions to biofilm formation and stability of the matrix, and immune evasion. In addition, insight into the role of exopolysaccharides in biofilms is highlighted through the evaluation of emerging techniques such as pH probing of biofilm colonies, solid-state nuclear magnetic resonance for macromolecular interactions within biofilms, and super-resolution microscopy analysis of biofilm development. Finally, exopolysaccharide as a potential nutrient source for species within a biofilm is discussed.


Sign in / Sign up

Export Citation Format

Share Document