scholarly journals Propolis Is an Efficient Fungicide and Inhibitor of Biofilm Production by VaginalCandida albicans

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Isis Regina Grenier Capoci ◽  
Patrícia de Souza Bonfim-Mendonça ◽  
Glaucia Sayuri Arita ◽  
Raphaela Regina de Araújo Pereira ◽  
Marcia Edilaine Lopes Consolaro ◽  
...  

Vulvovaginal candidiasis (VVC) is one of the most common genital infections in women. The therapeutic arsenal remains restricted, and some alternatives to VVC treatment are being studied. The present study evaluated the influence of a propolis extractive solution (PES) on biofilm production byCandida albicansisolated from patients with VVC. Susceptibility testing was used to verify the minimum inhibitory concentration (MIC) of PES, with fluconazole and nystatin as controls. The biofilm formation of 29 vaginal isolates ofC. albicansand a reference strain that were exposed to PES was evaluated using crystal violet staining. Colony-forming units were evaluated, proteins and carbohydrates of the matrix biofilm were quantified, and scanning electron microscopy was performed. The MIC of PES ranged from 68.35 to 546.87 μg/mL of total phenol content in gallic acid. A concentration of 546.87 μg/mL was able to cause the death of 75.8% of the isolates. PES inhibited biofilm formation byC. albicansfrom VVC. Besides antifungal activity, PES appears to present important antibiofilm activity on abiotic surfaces, indicating that it may have an additional beneficial effect in the treatment of VVC.

2014 ◽  
Vol 17 (2) ◽  
pp. 321-329 ◽  
Author(s):  
K. Wolska ◽  
P. Szweda ◽  
K. Lada ◽  
E. Rytel ◽  
K. Gucwa ◽  
...  

AbstractThe molecular-typing strategy, ERIC-PCR was used in an attempt to determine the genomic relationship of 28 P. aeruginosa strains isolated from faeces of healthy bovine, bovine mastitis and from faeces of hospital patients as well as from environment. ERIC-PCR fingerprinting revealed large molecular differentiation within this group of isolates. Twenty two out of 28 strains tested generated unique patterns of DNA bands and only three genotypes consisted of two isolates each were identified. We also tested the P. aeruginosa isolates for their ability to form a biofilm on abiotic surfaces including polyvinylchloride and polystyrene. Different biofilm-forming abilities were demonstrated among strains; however, most of them (64.3%) showed moderate-biofilm forming ability. The strains with increased swimming and twitching motility displayed elevated biofilm formation. However, a negative correlation was found between slime and initial biofilm production. On the basis of the results obtained, we suggest that there are no major differences in phenotypic properties between P. aeruginosa strains isolated from different sources


Author(s):  
Jamsheera Cp ◽  
Ethel Suman

Objective: The present study aimed at finding the resistance pattern of Pseudomonas aeruginosa and other Pseudomonas species isolated from various clinical specimens in the laboratory.Methods: A total of 150 isolates of different species of Pseudomonas obtained from various clinical specimens processed at the Microbiology laboratory of Kasturba Medical College, Manipal Academy of Higher Education, were taken for this study. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method and interpreted according to the CLSI guidelines. Biofilm assay was performed by modified O’Toole and Kolter method. The results were analyzed using SPSS 17.0 and Student’s unpaired t-test, Kruskal–Wallis, Mann–Whitney, ANOVA, and Chi-square test. p<0.05 was considered statistically significant.Results: Increased resistance was observed by P. aeruginosa to cefotaxime, cotrimoxazole, levofloxacin, ofloxacin, and ticarcillin clavulanate. There was also a good correlation between antibiotic resistance to aztreonam, netilmicin, and ceftazidime and biofilm production. Results of the present study, therefore, demonstrated the occurrence of resistance to various antipseudomonal agents among the biofilm-producing P. aeruginosa isolates.Conclusion: The present study may help in assessing the seriousness of drug resistance caused by biofilm formation in P. aeruginosa and devise strategies through antibiotic policies to minimize such problems.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2280 ◽  
Author(s):  
Valentina Puca ◽  
Tonino Traini ◽  
Simone Guarnieri ◽  
Simone Carradori ◽  
Francesca Sisto ◽  
...  

Surgical site infections (SSIs) represent the most common nosocomial infections, and surgical sutures are optimal surfaces for bacterial adhesion and biofilm formation. Staphylococcus spp., Enterococcus spp., and Escherichia coli are the most commonly isolated microorganisms. The aim of this research was to evaluate the antibiofilm activity of a medical device (MD) containing TIAB, which is a silver-nanotech patented product. The antibacterial effect was evaluated against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, and E. coli ATCC 25922 by assessing the minimum inhibitory concentration (MIC) by the Alamar Blue® (AB) assay. The antibiofilm effect was determined by evaluation of the minimum biofilm inhibitory concentration (MBIC) and colony-forming unit (CFU) count. Subsequently, the MD was applied on sutures exposed to the bacterial species. The antimicrobial and antibiofilm effects were evaluated by the agar diffusion test method, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM). The MIC was determined for S. aureus and E. faecalis at 2 mg/mL, while the MBIC was 1.5 mg/mL for S. aureus and 1 mg/mL for E. faecalis. The formation of an inhibition zone around three different treated sutures confirmed the antimicrobial activity, while the SEM and CLSM analysis performed on the MD-treated sutures underlined the presence of a few adhesive cells, which were for the most part dead. The MD showed antimicrobial and antibiofilm activities versus S. aureus and E. faecalis, but a lower efficacy against E. coli. Surgical sutures coated with the MD have the potential to reduce SSIs as well as the risk of biofilm formation post-surgery.


Author(s):  
Borel Bisso Ndezo ◽  
Christian Ramsès Tokam Kuaté ◽  
Jean Paul Dzoyem

Background. Thymol and piperine are two naturally occurring bioactive compounds with several pharmacological activities. In this study, their antibiofilm potential either alone or in combination with three aminoglycoside antibiotics was evaluated against a biofilm of Klebsiella pneumoniae. Methods. Determination of antimicrobial susceptibility was performed using the broth microdilution method. Biofilm formation was evaluated by the microtiter plate method. Antibiofilm activity was determined using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium-bromide (MTT) assay. The combination studies were performed by the checkerboard microdilution method. Results. The minimum biofilm inhibitory concentration (MBIC) of streptomycin was reduced by 16- to 64-fold when used in combination with thymol, while the MBIC of kanamycin was reduced by 4-fold when combined with piperine. The minimum biofilm eradication concentration (MBEC) values of streptomycin, amikacin, and kanamycin were, respectively, 16- to 128-fold, 4- to 128-fold, and 8- to 256-fold higher than the planktonic minimum inhibitory concentration (MIC). Thymol combined with streptomycin or kanamycin showed synergic effects against the preformed biofilm with 16- to 64-fold reduction in the minimum biofilm eradication concentration values of each antibiotic in combination. Piperine acted also synergically with kanamycin with an 8- to 16-fold reduction in the minimum biofilm eradication concentration values of kanamycin in combination. Conclusion. The association of thymol with antibiotics showed a strong synergistic effect both in the inhibition of biofilm formation and the destruction of the preformed biofilm of K. pneumoniae. This study suggests that a combination of thymol with streptomycin, amikacin, or kanamycin could be a promising alternative therapy to overcome the problem of K. pneumoniae biofilm-associated infections.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marcin Rozalski ◽  
Bartlomiej Micota ◽  
Beata Sadowska ◽  
Anna Stochmal ◽  
Dariusz Jedrejek ◽  
...  

New antimicrobial properties of products derived fromHumulus lupulusL. such as antiadherent and antibiofilm activities were evaluated. The growth of gram-positive but not gram-negative bacteria was inhibited to different extents by these compounds. An extract of hop cones containing 51% xanthohumol was slightly less active againstS. aureusstrains (MIC range 31.2–125.0 μg/mL) than pure xanthohumol (MIC range 15.6–62.5 μg/mL). The spent hop extract, free of xanthohumol, exhibited lower but still relevant activity (MIC range 1-2 mg/mL). There were positive coactions of hop cone, spent hop extracts, and xanthohumol with oxacillin against MSSA and with linezolid against MSSA and MRSA. Plant compounds in the culture medium at sub-MIC concentrations decreased the adhesion ofStaphylococcito abiotic surfaces, which in turn caused inhibition of biofilm formation. The rate of mature biofilm eradication by these products was significant. The spent hop extract at MIC reduced biofilm viability by 42.8%, the hop cone extract by 74.8%, and pure xanthohumol by 86.5%. When the hop cone extract or xanthohumol concentration was increased, almost complete biofilm eradication was achieved (97–99%). This study reveals the potent antibiofilm activity of hop-derived compounds for the first time.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Adriana A. Almeida-Apolonio ◽  
Wellinton J. Cupozak-Pinheiro ◽  
Vagner M. Berres ◽  
Fabiana G. S. Dantas ◽  
Terezinha I. E. Svidzinski ◽  
...  

Cryptococcus gattiiis an etiologic agent of cryptococcosis and a serious disease that affects immunocompromised and immunocompetent patients worldwide. The therapeutic arsenal used to treat cryptococcosis is limited to a few antifungal agents, and the ability ofC. gattiito form biofilms may hinder treatment and decrease its susceptibility to antifungal agents. The objective of this study was to evaluate the antifungal and antibiofilm activities of an ethanolic extract ofCochlospermum regium(Schrank) Pilger leaves againstC. gattii. The antifungal activity was assessed by measuring the minimum inhibitory concentration (MIC) using the broth microdilution technique and interaction of the extract with fluconazole was performed of checkerboard assay. The antibiofilm activity of the extract was evaluated in 96-well polystyrene microplates, and the biofilms were quantified by counting colony forming units. The extract showed antifungal activity at concentrations of 62.5 to 250μg/mL and when the extract was evaluated in combination with fluconazole,C. gattiiwas inhibited at sub-MIC levels. The antibiofilm activity of the extract againstC. gattiiwas observed both during biofilm formation and on an already established biofilm. The results showed that the ethanolic extract of the leaves ofC. regiumshows promise for the development of antifungal drugs to treat cryptococcosis and to combatC. gattiibiofilms.


2019 ◽  
Vol 24 (2) ◽  
pp. 110 ◽  
Author(s):  
Hasyrul Hamzah ◽  
Triana Hertiani ◽  
Sylvia Utami Tunjung Pratiwi ◽  
Titik Nuryastuti

Biofilm acts as the mediator for infection nowadays. Approximately, more than 80% infection incidents are biofilm-formation related. Biofilm as bacteria's defense system is more difficult to eradicate by antibiotic; therefore, pathogen bacteria on their biofilm forms can make serious problems for human health. The invention of a new candidate for polymicrobial biofilm can be an essential challenge to be studied, in order to prevent infections related to biofilm. Tannin is a polyphenol compound with anti-bacterial and anti-fungal potential. This study aims to acknowledge the effectiveness of tannin in inhibition and degradation of C. albicans, P. aeruginosa, E. coli, S. aureus, and polymicrobial biofilm. The assay for biofilm inhibition and degradation were determined with microtiter broth method. The effectivity of tannin antibiofilm against polymicrobial biofilm were analyzed by calculating minimum biofilm inhibitory concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50) values. The mechanism of action of tannin against polymicrobial biofilm was tested using scanning electron microscopy (SEM). The data were analyzed using the Statistical Package for the Social Sciences (SPSS) with a 95% confidence level. Tannin 1% gave inhibition activity of mono-species biofilm formation S. aureus in the middle phase and maturation of 79.04±0.01, 61.48±0.03, E. coli 74.56±0.01, 67.91±0.02, P. aeruginosa 67.32±0.05, 35.13± 0.01, C. albicans 60.62±0.01, 47.16±0.01. The results also provide evidence that tannin activity can degrade and damage the matrix of extracellular polymeric substance (EPS) polymicrobial biofilms. Hence, tannins can be a potential candidate for new antibiofilm for polymicrobial biofilm.


2018 ◽  
Vol 46 (1) ◽  
pp. 5
Author(s):  
Dayane Olímpia Gomes ◽  
Laura Gonçalves da Silva Chagas ◽  
Gabriela Bim Ramos ◽  
Andreia Zago Ciuffa ◽  
Laís Miguel Rezende ◽  
...  

Background: Leptospirosis is a zoonosis that affects many species of mammals and occurs endemically in Brazil. The biofilm matrix provides structure and protection to the biofilm cells working as a physical barrier to antibiotic agents, which are attached or consumed by the matrix components. However, this attribute varies according to the matrix, antimicrobial agent and biofilm age. Leptospira may change morphologically according to environmental conditions, including cell aggregation and biofilm formation. Leptospira can colonize the ducts of kidney from hosts for a long time, forming a biofilm, which is believed to be an important factor for their maintenance in animals and in the environment. Thus, the objective of this research was to determine the biofilm formation capacity of four strains of Leptospira interrogans.Materials, Methods & Results: The strains were typified by WHO/FAO/OIE and National Collaborating Center for Reference and Research on Leptospirosis (Kit Biomedical Research, Amsterdam, Netherlands). Leptospira interrogans strains, two isolated from cattle and two isolated from dogs were biofilms tested for adhesion on polystyrene plates, extracellular matrix composition and confocal microscopy. In the plating adhesion test, the suspension was inoculated into 96-well sterile polystyrene microplates with flat bottom at a ratio of 1:200 in EMJH medium, followed by 24 h incubation at 28°C, with medium renewal after 12 h. After this period the wells were washed three times with sterile PBS and following incubation; the plates were dried in the oven at 60°C for 30 min and added 200 μL of 1% violet crystal for five min. Subsequently, the plates were washed with distilled water, after complete removal, 200 μL of acetic acid 33% was added and the readings were performed at 570 nm in the ELISA reader. The proteins and polysaccharides were quantified in a scraped pooled sample diluted in 0.85% sterile saline solution to achieve an optimal amount for testing used reagents of the BCA kit. The polysaccharide content was determined by adding into a tube, an aliquot of 0.5 mL from the pooled sample, 0.5 mL of phenol and then immediately 2.5 mL of sulfuric acid. The solution was homogenized and left to react for 15 min at room temperature. The reading was performed at 490 nm in ELISA reader. The strains were compared regarding polysaccharides and protein matrices using analysis of variance (ANOVA) and Tukey test. At confocal microscopy the strains were incubated with the tested polypropylene material for 24 h. The materials were washed with sterile phosphate buffer and stained with propidium iodide. The reading was performed using a Laser Scanning Confocal Microscope (Zeiss 710) with laser excitation (488 nm) and 580-680 nm emission filters for propidium iodide (red marking). All strains displayed strong adherence on microplate and the amount of polysaccharides in biofilm was not statistically different among the studied strains, but the amount of protein was significantly different in strain 4 (P > 0.5). The confocal microscopy showed the adherence of the Leptospira spp. strains to polypropylene material after washing.Discussion: Biofilm production plays an important role in the maintenance of a chronic infection by Leptospira interrogans with renal colonization. The exopolysaccharide (EPS) has various functions, such as checking insolubility in water; giving the three-dimensional conformation of the biofilm; protecting cells from physical (mechanical action, irradiation and temperature variations), chemical.


2020 ◽  
Vol 1 (1) ◽  
pp. 25-32
Author(s):  
Maryam Pezeshki Najafabadi ◽  
Maryam Mohammadi-Sichani ◽  
Mohammad Javad Kazemi ◽  
Mohammad Sadegh Shirsalimian ◽  
Majid Tavakoli

Biofilm formation of Pseudomonas aeruginosa makes up a sizeable proportion of hospital-acquired infections, because bacteria in biofilms can resist antibiotic treatment. The extracellular polymeric substance of P. aeruginosa biofilm is an imprecise collection of extracellular polysaccharides, proteins and microbial cells. Rumex dentatus belongs to polygonaceae family. This family can be found in Middle East. The aim of this present study was to assess the effect of various concentrations of methanol extract of Rumex dentatus on biofilm formation of Pseudomonas aeruginosa after 48 h and 72 h. In this experimental study we collected Rumex dentatus from Khoramabad, Iran. The working extracts were 250, 125, 62.5, 31.25, 15.62, 7.81, 3.9, 1.95, 0.97 and 0.48 mg/ml. We used microtiter plate method to grow P. aeruginosa biofilm and assess the antibiofilm activity of plant extract. The composition of methanol extract obtained from Rumex dentatus was studied by gas chromatography. The minimum biofilm inhibitory concentration (MBIC) for P. aeruginosa found to be 250 mg/ml. GC-MS  analyses indicated that these fractions contained a variety of compounds including Bicyclo (3.1.1) heptan- 3 -one, 2, 6, 6- trimethyl,  Bicyclo (3.1.1) heptan, 6, 6- dimethyl and Eucalyptol. There were consequential correlations between antibiofilm activity and the concentration of extracts after 48 and 72 h.


2018 ◽  
Vol 63 (2) ◽  
pp. e01555-18 ◽  
Author(s):  
Aranka Persyn ◽  
Ona Rogiers ◽  
Matthias Brock ◽  
Greetje Vande Velde ◽  
Mohamed Lamkanfi ◽  
...  

ABSTRACT Candida glabrata can attach to various medical implants and forms thick biofilms despite its inability to switch from yeast to hyphae. The current in vivo C. glabrata biofilm models only provide limited information about colonization and infection and usually require animal sacrifice. To gain real-time information from individual BALB/c mice, we developed a noninvasive imaging technique to visualize C. glabrata biofilms in catheter fragments that were subcutaneously implanted on the back of mice. Bioluminescent C. glabrata reporter strains (lucOPT 7/2/4 and lucOPT 8/1/4), free of auxotrophic markers, expressing a codon-optimized firefly luciferase were generated. A murine subcutaneous model was used to follow real-time in vivo biofilm formation in the presence and absence of fluconazole and caspofungin. The fungal load in biofilms was quantified by CFU counts and by bioluminescence imaging (BLI). C. glabrata biofilms formed within the first 24 h, as documented by the increased number of device-associated cells and elevated bioluminescent signal compared with adhesion at the time of implant. The in vivo model allowed monitoring of the antibiofilm activity of caspofungin against C. glabrata biofilms through bioluminescent imaging from day four after the initiation of treatment. Contrarily, signals emitted from biofilms implanted in fluconazole-treated mice were similar to the light emitted from control-treated mice. This study gives insights into the real-time development of C. glabrata biofilms under in vivo conditions. BLI proved to be a dynamic, noninvasive, and sensitive tool to monitor continuous biofilm formation and activity of antifungal agents against C. glabrata biofilms formed on abiotic surfaces in vivo.


Sign in / Sign up

Export Citation Format

Share Document