scholarly journals Chemical composition and biological properties in Mentha spicata under conventional and organic fertilization

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Diego Ariel Meloni ◽  
José Aliçandro Bezerra da Silva ◽  
Anahí Bordón ◽  
Julia Andrea Lescano ◽  
Rosa Elizabeth Beltrán

Introduction: Spearmint (Mentha spicata) is widely used in the pharmaceutical and food industries, thanks to chemical properties largely influenced by genetic and environmental factors, especially soil conditions. Objective: To determine the effect of conventional and organic fertilization on the chemical and biological properties of M. spicata. Methods: We conducted field trials in a randomized block experimental design, with four replications, using unfertilized crops and crops fertilized with urea (0,15 t ha-1) or vermicompost (5 and 10 t ha-1). Results: All fertilization treatments increased essential oil yield, carvone content, and total polyphenol concentration with respect to the control. They also increased the antioxidant capacity and the inhibitory activity of the acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glycosidase enzymes. The effect was more marked in the crop fertilized with 5 t ha-1 vermicompost. Conclusions: Both conventional and organic fertilization increase the yield and quality of M. spicata essential oils. However, organic fertilization with 5 t ha-1 vermicompost yields rich total polyphenols and carvone. This improves antioxidant and medicinal properties, acting on enzymes related to Alzheimer's disease and diabetes.

2021 ◽  
Author(s):  
Germano MF Costa-Neto ◽  
Jose M F Crossa ◽  
Roberto F Fritsche-Neto

Quantitative genetics states that phenotypic variation is a consequence of genetic and environmental factors and their subsequent interaction. Here, we present an enviromic assembly approach, which includes the use of ecophysiology knowledge in shaping environmental relatedness into whole-genome predictions (GP) for plant breeding (referred to as E-GP). We propose that the quality of an environment is defined by the core of environmental typologies (envirotype) and their frequencies, which describe different zones of plant adaptation. From that, we derive markers of environmental similarity cost-effectively. Combined with the traditional genomic sources (e.g., additive and dominance effects), this approach may better represent the putative phenotypic variation across diverse growing conditions (i.e., phenotypic plasticity). Additionally, we couple a genetic algorithm scheme to design optimized multi-environment field trials (MET), combining enviromic assembly and genomic kinships to provide in-silico realizations of the future genotype-environment combinations that must be phenotyped in the field. As a proof-of-concept, we highlight E-GP applications: (1) managing the lack of phenotypic information in training accurate GP models across diverse environments and (2) guiding an early screening for yield plasticity using optimized phenotyping efforts. Our approach was tested using two non-conventional cross-validation schemes to better visualize the benefits of enviromic assembly in sparse experimental networks. Results on tropical maize show that E-GP outperforms benchmark GP in all scenarios and cases tested. We show that for training accurate GP models, the genotype-environment combinations' representativeness is more critical than the MET size. Furthermore, we discuss theoretical backgrounds underlying how the intrinsic envirotype-phenotype covariances within the phenotypic records of (MET) can impact the accuracy of GP and limits the potentialities of predictive breeding approaches. The E-GP is an efficient approach to better use environmental databases to deliver climate-smart solutions, reduce field costs, and anticipate future scenarios.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 575 ◽  
Author(s):  
Domenico Ronga ◽  
Alfonso Pentangelo ◽  
Mario Parisi

Processing tomato is the second most important worldwide cash crop, generally produced in high-input systems. However, fruit yield and quality are affected by agronomic management, particularly nitrogen (N) fertilization, whose application to indeterminate growth genotypes for canning has yet to be investigated in depth. Hence, the objective of this work was to assess the effects of different N rates (0, 50, 125, 200, 275, and 350 kg ha−1) on fruit yield and quality characteristics of processing tomato ‘San Marzano’ landrace. The results of our study showed that 125 and 200 kg of N ha−1 are the most appropriate rates in soil with high fertility, ensuring the highest values of marketable yield and brix yield. However, plants fertilized with 125 kg of N ha−1 attained higher values of N efficiency and fruit K and P concentrations than plants fertilized with 200 kg of N ha−1. Our results suggest that overdoses of N supplies negatively affected fruit yield and quality of San Marzano landrace grown in high soil fertility conditions, also reducing the agricultural sustainability. Hence, specific agronomic protocol and extension services are required to optimally manage tomato crop systems.


2011 ◽  
Vol 51 (No. 9) ◽  
pp. 397-402 ◽  
Author(s):  
K. Hamouz ◽  
J. Lachman ◽  
P. Dvořák ◽  
V. Pivec

In the years 1995–1997 the effect of ecological growing on the yield and selected parameters of quality of consumer potatoes (in comparison with conventional way) were investigated. The ecological way of growing differed in the lack of chemical protection against diseases and pests and industrial fertilizers. Field trials were realised with seven varieties (Impala, Karin, Agria, Korela, Rosella, Santé and Ornella) on two sites (Uhříněves and Valečov). The ecological way of growing had markedly negative effect on the yield (decrease by 36%). In qualitative parameters the ecological way increased inconclusively polyphenol content (by 10.2%), decreased inconclusively nitrate content (by 11.0%) and reducing sugars (by 22%). It did not affect dry matter content, resistance of tubers to mechanical damage, table value and glycoalkaloid content. Variety Santé achieved the best results from the point of view of the yield and majority of qualitative parameters among varieties. Qualitative parameters of ecologically cultivated potatoes were significantly affected by the year of cultivation.


2020 ◽  
Vol 5 (86) ◽  
pp. 3-10
Author(s):  
V.G. Chernikov ◽  
◽  
R.A. Rostovtsev ◽  
N.A. Kudryavtsev ◽  
I.V. Uschapovsky ◽  
...  

The formation of fiber flax yield and quality parameters depends on many soil-climatic, breedinggenetic, as well as anthropogenic factors. The quality of flax fiber is a combination of a number of features and properties that depend on the varietal characteristics of plants, the conditions of their cultivation, technologies for harvesting and straw retting, as well as on the processing modes of raw materials. During plant vegetation (90-130 days) many factors such as soil conditions (pH 4.8-5.5, humus 1.8-2.5%, P2O5 and K2O – 150-200 and 100-200 mg/kg, respectively) and the area of plant nutrition (15-30 million seeds/ha), temperature regime (the sum of active temperatures 1000-1800ºC), water supplying (400-430 units of water mass to create 1 unit of dry matter) and insolation (the arrival of FAR during the growing season 20-25 kcal / cm²), contamination of weeds (more than 60 annual and perennial species) and pests (more than 200 types of fungal, bacterial and viral diseases), features of phytosanitary measures (more than 50 chemicals) and agrotechnologic manners (Federal Register of technologies for the production of crop products) have a great influence on the quality of flax raw materials and can be a limit factor. Environmentally hazardous pollution of air, water and soil - the main components for the production of fiber flax – strongly affects the yield and quality of flax products. The development of waste-free environmentally friendly technologies for the cultivation, harvesting and processing of flax is an urgent task of scientific support of the industry. The main environmental factors affecting the yield and quality of fiber flax are discussed in the article.


2008 ◽  
pp. 127-136
Author(s):  
Diána Ungai ◽  
Zoltan Győri

The yield and quality of the sugar beet are mainly determined by level crop production system; therefore the effects of foliar fertilization were studied. Our field trials were carried out in 2005  and 2006 in Hajdúböszörmény, at two experimental sites. In our trials the effects of Biomit Plussz, Fitohorm and Kelcare Cu (having high Cu content) as foliar fertilizers, as well as a fungicide with high sulphur content, Cosavet DF, were studied andcompared. Effects of treatments were studied in four replicates. We took root samples at 4 week intervals, starting in August. The quality of root (sucrose, potassium, sodium and alfa-amino N content) was determined from filtrated beet broth, by an automatic beet laboratory system, called VENEMA. Leaf samples were taken three times in the growing season, element composition was measured by ICP-OES.We found that the crop and the sugar yield were significantly influenced by the foliar treatments both of the two years.


2018 ◽  
pp. 1-11
Author(s):  
Rama T. Rashad ◽  
Fatma H. A. El-Agyzy ◽  
Seham M. Abdel-Azeem

Aims: Two field experiments have been carried out to study the effect of different irrigation periods in the presence of compost as an organic amendment on the yield and quality of lupine (Lupinus termis L.) under the sandy soil conditions. Study Design: Split-plot design.  Place and Duration of Study: The successive winter seasons of 2016/2017 and 2017/2018 at the Ismailia Agricultural Research Station, (30°35'30" N 32°14'50" E elevation 3 m), Agricultural Research Center (ARC), Egypt. Methodology: Compost has been applied at the rates of 11.90, 23.81 and 35.71 ton/ha before planting. Three irrigation intervals were assigned after planting by 3, 6, and 9 days; the applied water volume for each was 4761.91 m3/ha. Results: After harvesting, some parameters were estimated. As the compost rates increased, the soil EC significantly decreased while the available N, P, K, and Fe were significantly increased by 9.51, 12.79, 5.17, and 5.8%, respectively. For same compost rate, the irrigation intervals (3, 6, and 9 days) significantly decreased the available N relatively by 2.88, 5.16, and 6.96%, respectively and the available K by 3.45, 5.06, and 4.37%, respectively. The 6 days interval showed that most significant increase in the seeds' content of nutrients at different compost rates and the seed yield has increased by 19.59, 22.31, and 21.88% for the compost rates of 11.90, 23.81, and 35.71 ton/ha, respectively. The relative increase was by 20.48, 7.63, 4.49, 10.89, and 14.92% for the crude protein, crude lipids, total ash, TSS and the amino acids, respectively. The effect of treatments on the relative shoot moisture (%) and the field water use efficiency (F.W.U.E.) (kg/m3) was discussed. Conclusion: The 6 days irrigation interval along with a compost application rate of 23.81 ton/ha can be recommended for lupine grown in sandy soil as they showed the most significant increase in the nutrients content of seeds by 22.31%.


Sign in / Sign up

Export Citation Format

Share Document