scholarly journals Increasing-amplitude fatigue loading experiments to exam the effects of dynamic frequency on rock bridge fracturing revealed by acoustic emission and CT techniques

Author(s):  
yu wang ◽  
dayu long ◽  
changhong li ◽  
jianqiang han
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
H. J. Meng ◽  
Y. Wang ◽  
B. Zhang ◽  
S. H. Gao

This study is aimed at revealing the effect of dynamic loading frequency on the fracture evolution behavior in preflawed rock samples under multistage cyclic loading conditions. The fracture evolution characteristics were investigated using stress-strain descriptions and in situ acoustic emission techniques. It is shown that rock strength, deformation, AE pattern, and fatigue life are strongly affected by the applied dynamic loading frequency. Rock fatigue strength and lifetime increase with the increase of dynamic loading frequency. The AE count and energy output both increase with the increase of the applied loading frequency. Six kinds of cracking modes were revealed by AE spectral frequency analysis. It is shown that large-scaled cracks are easy to be formed for rock subjected to high-frequency loads, reflected as the deceasing of AE signals with high-frequency–high-amplitude signal feature. It is suggested that applied dynamic loading frequency has obvious impact on the crack coalescence at the rock bridge segment. The testing results are helpful to enhance the cognitive of the influence of dynamic frequency on the crack communication behavior and can be expected to predict the stability of rock mass structures where rock mass is subjected to fatigue loading.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 341
Author(s):  
Marc Thiele ◽  
Stephan Pirskawetz

The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods.


2021 ◽  
Vol 5 (8) ◽  
pp. 221
Author(s):  
Janna Krummenacker ◽  
Joachim Hausmann

This study investigates the damage initiation in short glass fiber-reinforced polyamide 6.6 under fatigue loading using acoustic emission analysis. An optimized specimen geometry was developed to meet the specific requirements of this testing method, at the same time allowing further micromechanical studies. Specimens were preloaded with tensile–tensile fatigue loading, varying the maximum stress and the number of load cycles. Subsequently, the acoustic emission signals in residual strength tests were compared to those of undamaged specimens. The idea behind this approach is that only the damage that has not already occurred under fatigue load can be recorded in the residual strength tests. Using the analysis of acoustic energy, a stress threshold for damage initiation was identified. Furthermore, with tension–tension fatigue tests, the SN curve of the material was determined to estimate the lifetime for the identified stress threshold. The presented approach allows us to estimate a so-called endurance limit of short glass fiber-reinforced polyamide 6.6.


Author(s):  
Osama M. Jadaan ◽  
K. C. Liu ◽  
H. Pih

Abstract Progressive damage due to tension-tension cyclic fatigue loading for three distinct ceramic materials was evaluated using the acoustic emission (AE) technique. The objective of this study was to determine the capabilities of the AE method to detect the imminence of failure and to locate potential fracture sites. Results indicated that the AE technique was capable of predicting failure by showing an increase in energy/count rate prior to failure. Although potential fracture sites can be identified, exact location of the final fracture site can be known only when catastrophic failure takes place.


2013 ◽  
Vol 592-593 ◽  
pp. 553-556
Author(s):  
František Vlasic ◽  
Josef Volák ◽  
Libor Nohál ◽  
Pavel Mazal ◽  
Filip Hort

This paper deals with the basic research of cyclic damage during the initial stages of fatigue process using the non-destructive testing methods. The acoustic emission method was used for monitoring of the microstructure changes during fatigue loading. The electrical potential measurements of specimen and microscopic observation were used mainly to detect the first short cracks and their propagation. The fatigue tests at room temperature were conducted on titanium alloy and creep-resistant steel specimens under bending and tension loading. The aim of the study was to compare the acoustic emission signal at different types of loading until fracture and to analyze in detail the signal changes in initial stages of fatigue process. This analysis was primarily based on the waveform similarity and division into classes. The results show the high sensitivity of the acoustic emission technology in the transition from the stage of surface relief evolution to the stage of crack nucleation and propagation.


Author(s):  
K M Holford ◽  
R Pullin ◽  
S L Evans ◽  
M J Eaton ◽  
J Hensman ◽  
...  

Structural health monitoring (SHM) is of paramount importance in the aircraft industry: not only to ensure the safety and reliability of aircraft in flight and to ensure timely maintenance of critical components, but also increasingly to monitor structures under test for airworthiness certification of new designs. This article highlights some of the recent advances in the acoustic emission (AE) technique as applied to SHM, and the new approaches that are crucial for the successful use of AE data for diagnostic purposes. These include modal analysis, enhanced location techniques, and novel signal processing approaches. A case study is presented on a landing gear component undergoing fatigue loading in which a linear location analysis using conventional techniques identified the position of fracture and final rupture of the specimen. A principal component analysis approach was used to separate noise signals from signals arising from fatigue cracks, which identified and located further fatigue crack positions, subsequently confirmed by magnetic particle inspection. Kernel probability density functions are used to aid visualization of the damage location.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guoqing Chen ◽  
Yan Zhang ◽  
Runqiu Huang ◽  
Fan Guo ◽  
Guofeng Zhang

Acoustic emission (AE) technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1) small scale direct shear tests of rock bridge with different lengths and (2) large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failure model were done. It can be found that whether it is small scale test or large scale landslide model test, AE technique accurately located the AE source point, which reflected the failure generation and expansion of internal cracks in rock samples. Large scale landslide model with locked section test showed that rock bridge in rocky slope has typical brittle failure behavior. The two tests based on AE technique well revealed the rock failure mechanism in rocky slope and clarified the cause of high speed and long distance sliding of rocky slope.


Sign in / Sign up

Export Citation Format

Share Document