scholarly journals Cold-induced intermediary cell-specific overexpression of galactinol synthase 1 revealed an unique strategy improving stress adaptability of Cucumber

Author(s):  
Hai-Bo Dai ◽  
Zi-Hui Zhu ◽  
Zhen-Guang Wang ◽  
Zhiping Zhang ◽  
Weiwen Kong ◽  
...  
1995 ◽  
Vol 109 (2) ◽  
pp. 505-511 ◽  
Author(s):  
J. J. Liu ◽  
W. Odegard ◽  
B. O. de Lumen

2013 ◽  
Vol 127 (2) ◽  
pp. 347-358 ◽  
Author(s):  
Jie Zhou ◽  
Yang Yang ◽  
Juan Yu ◽  
Like Wang ◽  
Xiang Yu ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


1982 ◽  
Vol 60 (7) ◽  
pp. 1054-1059 ◽  
Author(s):  
John A. Webb

An enzyme synthesizing galactinol, UDP-D-galactose:myo-inositol-1-α-D-galactosyl transferase (galactinol synthase), has been isolated and partially purified from mature leaves of Cucurbita pepo. The enzyme showed optimal activity between pH 7.5 and 8.0 and required Mn2+ and the presence throughout isolation, storage, and assay of a sulfhydryl protectant (β-mercaptoethanol). EDTA was completely inhibitory. From a range of metal ions only Mg2+ partially replaced Mn2+, while Co2+, Zn2+, Cu2+, and Ni2+ were inhibitory. The uridine nucleotides and UDP-glucose were from 40 to 80% inhibitory and probably constitute part of the in vivo control system. High concentrations of galactose, melibiose, and xylose were partially inhibitory. The enzyme appeared highly specific for myo-inositol and showed no ability for galactosyl transfer to any other naturally occurring sugar or sugar alcohol. Some reactivity was obtained with the isomeric scyllo-inositol but the product was not identified. A range of other sugar nucleotides were unreactive.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 179
Author(s):  
Tanika Thakur ◽  
Kshitija Sinha ◽  
Tushpinder Kaur ◽  
Ritu Kapoor ◽  
Gulshan Kumar ◽  
...  

Rice is a staple food crop for almost half of the world’s population, especially in the developing countries of Asia and Africa. It is widely grown in different climatic conditions, depending on the quality of the water, soil, and genetic makeup of the rice cultivar. Many (a)biotic stresses severely curtail rice growth and development, with an eventual reduction in crop yield. However, for molecular functional analysis, the availability of an efficient genetic transformation protocol is essential. To ensure food security and safety for the continuously increasing global population, the development of climate-resilient crops is crucial. Here, in this study, the rice transformation protocol has been effectively optimized for the efficient and rapid generation of rice transgenic plants. We also highlighted the critical steps and precautionary measures to be taken while performing the rice transformation. We further assess the efficacy of this protocol by transforming rice with two different transformation constructs for generating galactinol synthase (GolS) overexpression lines and CRISPR/Cas9-mediated edited lines of lipase (Lip) encoding the OsLip1 gene. The putative transformants were subjected to molecular analysis to confirm gene integration/editing, respectively. Collectively, the easy, efficient, and rapid rice transformation protocol used in this present study can be applied as a potential tool for gene(s) function studies in rice and eventually to the rice crop improvement.


Sign in / Sign up

Export Citation Format

Share Document