scholarly journals Autophagy in Alzheimer’s disease pathogenesis: therapeutic potential and future perspectives

Author(s):  
Zhigang Zhang ◽  
You-Qiang Song ◽  
Jie Tu

Alzheimer’s disease (AD) is a complex neurodegenerative disease in the elderly. It is the most common cause of dementia in human. AD is characterized by accumulation of abnormal protein aggregates including amyloid plaques (composed of beta-amyloid (Aβ) peptides) and neurofibrillary tangles (formed by hyper-phosphorylated tau protein). Besides, synaptic plasticity, neuroinflammation, calcium signaling etc. are found to be dysfunctional as well in AD patients. Autophagy is an evolutionarily conserved lysosome-dependent cellular event in eukaryotes. It is closely linked to the modulation of protein metabolism, through which damaged organelles and mis-folded proteins are degraded and then recycled to maintain protein homeostasis. Accumulating evidence has showed that impaired autophagy contributes to AD pathogenesis. In the present review, we highlight the role of autophagy, including bulk and selective autophagy, in regulating metabolic circuits in AD pathogenesis. We also discuss the potential and future perspectives of autophagy-inducing strategy in AD therapeutics.

2020 ◽  
Vol 21 (23) ◽  
pp. 9003
Author(s):  
Natalia Zaręba ◽  
Marta Kepinska

Alzheimer’s disease (AD) is one of the most frequently diagnosed types of dementia in the elderly. An important pathological feature in AD is the aggregation and deposition of the β-amyloid (Aβ) in extracellular plaques. Transthyretin (TTR) can cleave Aβ, resulting in the formation of short peptides with less activity of amyloid plaques formation, as well as being able to degrade Aβ peptides that have already been aggregated. In the presence of TTR, Aβ aggregation decreases and toxicity of Aβ is abolished. This may prevent amyloidosis but the malfunction of this process leads to the development of AD. In the context of Aβplaque formation in AD, we discuss metallothionein (MT) interaction with TTR, the effects of which depend on the type of MT isoform. In the brains of patients with AD, the loss of MT-3 occurs. On the contrary, MT-1/2 level has been consistently reported to be increased. Through interaction with TTR, MT-2 reduces the ability of TTR to bind to Aβ, while MT-3 causes the opposite effect. It increases TTR-Aβ binding, providing inhibition of Aβ aggregation. The protective effect, assigned to MT-3 against the deposition of Aβ, relies also on this mechanism. Additionally, both Zn7MT-2 and Zn7MT-3, decrease Aβ neurotoxicity in cultured cortical neurons probably because of a metal swap between Zn7MT and Cu(II)Aβ. Understanding the molecular mechanism of metals transfer between MT and other proteins as well as cognition of the significance of TTR interaction with different MT isoforms can help in AD treatment and prevention.


2020 ◽  
Vol 218 ◽  
pp. 03041
Author(s):  
Yifei Jin

Alzheimer’s disease (AD) is chronic neurodegenerative dementia representing the most common cause of dementia in the elderly population. It is a major source of morbidity, mortality, and healthcare expenditure worldwide. Although the molecular and cellular properties related to AD have been demonstrated decades before the onset of clinical symptoms, AD’s pathogenesis is still unknown as a combination of risk factors causes it. Today, pathogenesis theories focused on senile plaques (SP) formed by the extracellular accumulation and deposition of Aβ peptides and neurofibrillary tangles (NFTs), which are composed of the hyperphosphorylated tau protein. Furthermore, growing evidence points out that toxic Aβ plays a primary causal role in the induction and transmission of pathology and neuronal dysfunction and loss. Therefore, Aβ is crucial to the development of AD and is a noteworthy issue in AD research. This review shows the formation of Aβ and the differences of cytotoxicity of its various isoforms and aggregation states. It also summarizes the mechanisms by which Aβ induce AD through its neurotoxicity and state how these mechanisms interact and reinforce each other.


2020 ◽  
Vol 21 (12) ◽  
pp. 1164-1173
Author(s):  
Siju Ellickal Narayanan ◽  
Nikhila Sekhar ◽  
Rajalakshmi Ganesan Rajamma ◽  
Akash Marathakam ◽  
Abdullah Al Mamun ◽  
...  

: Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.


2018 ◽  
Vol 15 (13) ◽  
pp. 1191-1212 ◽  
Author(s):  
Botond Penke ◽  
Gábor Paragi ◽  
János Gera ◽  
Róbert Berkecz ◽  
Zsolt Kovács ◽  
...  

Lipids participate in Amyloid Precursor Protein (APP) trafficking and processing - important factors in the initiation of Alzheimer’s disease (AD) pathogenesis and influence the formation of neurotoxic β-amyloid (Aβ) peptides. An important risk factor, the presence of ApoE4 protein in AD brain cells binds the lipids to AD. In addition, lipid signaling pathways have a crucial role in the cellular homeostasis and depend on specific protein-lipid interactions. The current review focuses on pathological alterations of membrane lipids (cholesterol, glycerophospholipids, sphingolipids) and lipid metabolism in AD and provides insight in the current understanding of biological membranes, their lipid structures and functions, as well as their role as potential therapeutic targets. Novel methods for studying the membrane structure and lipid composition will be reviewed in a broad sense whereas the use of lipid biomarkers for early diagnosis of AD will be shortly summarized. Interactions of Aβ peptides with the cell membrane and different subcellular organelles are reviewed. Next, the details of the most important lipid signaling pathways, including the role of the plasma membrane as stress sensor and its therapeutic applications are given. 4-hydroxy-2-nonenal may play a special role in the initiation of the pathogenesis of AD and thus the “calpain-cathepsin hypothesis” of AD is highlighted. Finally, the most important lipid dietary factors and their possible use and efficacy in the prevention of AD are discussed.


2020 ◽  
Vol 11 (1) ◽  
pp. 391-401
Author(s):  
Jiang Cheng ◽  
Guowei Wang ◽  
Na Zhang ◽  
Fang Li ◽  
Lina Shi ◽  
...  

AbstractBackground:Alzheimer’s disease (AD) is an ultimately fatal, degenerative brain disease in the elderly people. In the current work, we assessed the defensive capability of isovitexin (IVX) through an intracerebroventricular injection of streptozotocin (STZ)-induced AD mouse model.Methods:Mice were separated into four cohorts: sham-operated control mice; STZ-intoxicated Alzheimer’s mice; IVX cohort, IVX + STZ; and Ant-107 cohort, antagomiR-107 + IVX/STZ as in the IVX cohort.Results:The outcomes indicated that IVX administration ameliorated spatial memory loss and blunted a cascade of neuro-noxious episodes – including increased amyloid-beta (Aβ) and degraded myelin basic protein burden, neuroinflammation (represented by elevated caspase-1, TNF-α and IL-6 levels) and autophagic dysfunction (represented by altered LC3-II, Atg7 and beclin-1 expressions) – via the inhibition of PI3K/Akt/mTOR signalling axis. We considered the question of whether the epigenetic role of microRNA-107 (miR-107) has any impact on these events, by using antagomiR-107.Conclusion:This probing underscored that miR-107 could be a pivotal regulatory button in the activation of molecular signals linked with the beneficial autophagic process and anti-inflammatory activities in relation to IVX treatment. Hence, this report exemplifies that IVX could guard against Aβ toxicity and serve as an effectual treatment for patients afflicted with AD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Cátia R. Lopes ◽  
Rodrigo A. Cunha ◽  
Paula Agostinho

Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1267 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Md. Tanvir Kabir ◽  
Kamal Niaz ◽  
Philippe Jeandet ◽  
Christophe Clément ◽  
...  

Alzheimer’s disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer’s pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.


2019 ◽  
Vol 110 ◽  
pp. 47-58 ◽  
Author(s):  
Syed Obaidur Rahman ◽  
Bibhu Prasad Panda ◽  
Suhel Parvez ◽  
Madhu Kaundal ◽  
Salman Hussain ◽  
...  

2022 ◽  
Vol 119 (3) ◽  
pp. e2115082119
Author(s):  
Min Hee Park ◽  
Kang Ho Park ◽  
Byung Jo Choi ◽  
Wan Hui Han ◽  
Hee Ji Yoon ◽  
...  

Alzheimer’s disease (AD) is characterized by complex, multifactorial neuropathology, suggesting that small molecules targeting multiple neuropathological factors are likely required to successfully impact clinical progression. Acid sphingomyelinase (ASM) activation has been recognized as an important contributor to these neuropathological features in AD, leading to the concept of using ASM inhibitors for the treatment of this disorder. Here we report the identification of KARI 201, a direct ASM inhibitor evaluated for AD treatment. KARI 201 exhibits highly selective inhibition effects on ASM, with excellent pharmacokinetic properties, especially with regard to brain distribution. Unexpectedly, we found another role of KARI 201 as a ghrelin receptor agonist, which also has therapeutic potential for AD treatment. This dual role of KARI 201 in neurons efficiently rescued neuropathological features in AD mice, including amyloid beta deposition, autophagy dysfunction, neuroinflammation, synaptic loss, and decreased hippocampal neurogenesis and synaptic plasticity, leading to an improvement in memory function. Our data highlight the possibility of potential clinical application of KARI 201 as an innovative and multifaceted drug for AD treatment.


Author(s):  
Shierly . ◽  
Chandra Wirawan

Aging is the primary risk factor for various neurodegenerative diseases, including Alzheimer’s disease (AD), which is the most frequent form of Dementia. AD is progressive neurodegenerative disease with abnormal protein production, inflammation and memory deterioration. The main clinical manifestations of this illness are cognitive disturbance and memory deficit. Abnormal of beta-amyloid (Aβ), neurofibrillary tangles (NFTs) and tau deposition are the most common findings pathology in this disease. Recent studies indicate that epigenetic modifications strongly correlate in developing these pathology and disease progression. The hallmarks of epigenetic modifications are DNA (deoxyribonucleic acid) methylation, histone modifications, chromatin remodeling and ncRNA (non-coding ribonucleic acid) expressions. This review aims to explain the potential mechanisms of epigenetic modifications associate with this disease. The general conclusion of this review is that epigenetic modifications play an ultimate role in AD and there are potential biomarkers of AD and future novel treatment of AD based on epigenetics.


Sign in / Sign up

Export Citation Format

Share Document