scholarly journals Harnessing Pivotal Advances for Production and Structural Derivation of the Promising Molecule Ursolic Acid

Author(s):  
Hao-ran Liu ◽  
Nadeem Ahmad ◽  
Bo Lv ◽  
Chun Li

Ursolic acid (UA) is a ursane-type pentacyclic triterpenoid compound, naturally produced in plants via specialized metabolism and exhibits vast range of remarkable physiological activities and pharmacological manifestations. Owing to significant safety and efficacy in different medical conditions, UA may serve as a backbone to produce its derivatives with novel therapeutic functions. This review systematically provides an overview of the pharmacological activities, acquisition methods and structural modification methods of UA. In addition, we focused on the synthetic modifications of UA to yield its valuable derivatives with enhanced therapeutic potential. Furthermore, harnessing the essential advances for green synthesis of UA and its derivatives by advent of metabolic engineering and synthetic biology are highlighted. In combination with the advantages of UA biosynthesis and transformation strategy, large-scale production and applications of UA is a promising platform for further exploration.

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


2017 ◽  
pp. 1339-1366
Author(s):  
Valeria V. Kleandrova ◽  
Feng Luan ◽  
Alejandro Speck-Planche ◽  
M. Natália D. S. Cordeiro

Nanotechnology is a newly emerging field, posing substantial impacts on society, economy, and the environment. In recent years, the development of nanotechnology has led to the design and large-scale production of many new materials and devices with a vast range of applications. However, along with the benefits, the use of nanomaterials raises many questions and generates concerns due to the possible health-risks and environmental impacts. This chapter provides an overview of the Quantitative Structure-Activity Relationships (QSAR) studies performed so far towards predicting nanoparticles' environmental toxicity. Recent progresses on the application of these modeling studies are additionally pointed out. Special emphasis is given to the setup of a QSAR perturbation-based model for the assessment of ecotoxic effects of nanoparticles in diverse conditions. Finally, ongoing challenges that may lead to new and exciting directions for QSAR modeling are discussed.


2019 ◽  
Vol 18 (22) ◽  
pp. 1937-1954 ◽  
Author(s):  
Payal Gupta ◽  
Meenakshi Sharma ◽  
Neha Arora ◽  
Vikas Pruthi ◽  
Krishna Mohan Poluri

Background: Farnesol is an acyclic sesquiterpene alcohol, endogenously synthesized via the ergosterol pathway. It is a quorum sensing molecule (QSM) that was first discovered in C. albicans, and is involved in the inhibition of hyphae formation. Methods: This review focuses on the comprehensive details of occurrence, chemical/biological synthesis of farnesol and its derivatives, and the factors involved in the regulation of their production. Further, the review also presents their cellular functions and diversified biomedical applications. Results: Large-scale production of farnesol can be achieved using chemical synthesis and metabolic engineering approach. Farnesol is involved in the regulation of various physiological processes including filamentation, biofilm development, drug efflux, and apoptosis, etc. Farnesol and its derivatives/ analogues have also been reported to exhibit anti-biofilm, anti-cancer, anti-tumor and fungicidal properties. The antimicrobial potential of farnesol has been enhanced by synergizing it with known antifungal drugs, and also through nano-formulation(s). Conclusion: Apart from its quorum sensing activity, farnesol can be used as an effective anti-microbial, anti-inflammatory, ant-allergic, anti-cancerous, and anti-obesity agent.


Author(s):  
Valeria V. Kleandrova ◽  
Feng Luan ◽  
Alejandro Speck-Planche ◽  
M. Natália D. S. Cordeiro

Nanotechnology is a newly emerging field, posing substantial impacts on society, economy, and the environment. In recent years, the development of nanotechnology has led to the design and large-scale production of many new materials and devices with a vast range of applications. However, along with the benefits, the use of nanomaterials raises many questions and generates concerns due to the possible health-risks and environmental impacts. This chapter provides an overview of the Quantitative Structure-Activity Relationships (QSAR) studies performed so far towards predicting nanoparticles' environmental toxicity. Recent progresses on the application of these modeling studies are additionally pointed out. Special emphasis is given to the setup of a QSAR perturbation-based model for the assessment of ecotoxic effects of nanoparticles in diverse conditions. Finally, ongoing challenges that may lead to new and exciting directions for QSAR modeling are discussed.


2018 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
Andrea da Fonseca Ferreira ◽  
Dawidson Assis Gomes

Stem cell extracellular vesicles (EVs) have been widely studied because of their excellent therapeutic potential. EVs from different types of stem cell can improve vascularization as well as aid in the treatment of cancer and neurodegenerative diseases. The skin is a complex organ that is susceptible to various types of injury. Strategies designed to restore epithelial tissues’ integrity with stem cell EVs have shown promising results. Different populations of stem cell EVs are able to control inflammation, accelerate skin cell migration and proliferation, control wound scarring, improve angiogenesis, and even ameliorate signs of skin aging. However, large-scale production of such stem cell EVs for human therapy is still a challenge. This review focuses on recent studies that explore the potential of stem cell EVs in skin wound healing and skin rejuvenation, as well as challenges of their use in therapy.


Author(s):  
Marcel Walser ◽  
Sylvia Rothenberger ◽  
Daniel L. Hurdiss ◽  
Anja Schlegel ◽  
Valérie Calabro ◽  
...  

AbstractGlobally accessible therapeutics against SARS-CoV-2 are urgently needed. Here, we report the generation of the first anti-SARS-CoV-2 DARPin molecules with therapeutic potential as well as rapid large-scale production capabilities. Highly potent multi-DARPin molecules with low picomolar virus neutralization efficacies were generated by molecular linkage of three different mono-DARPin molecules. These multi-DARPin molecules target various domains of the SARS-CoV-2 spike protein, thereby limiting possible viral escape. Cryo-EM analysis of individual mono-DARPin molecules provided structural explanations for the mode of action. Analysis of the protective efficacy of one multi-DARPin molecule in a hamster SARS-CoV-2 infection model demonstrated a significant reduction of pathogenesis. Taken together, the multi-DARPin molecules reported here, one of which is currently entering clinical studies, constitute promising therapeutics against the COVID-19 pandemic.


2017 ◽  
pp. 1504-1532
Author(s):  
Valeria V. Kleandrova ◽  
Feng Luan ◽  
Alejandro Speck-Planche ◽  
M. Natália D. S. Cordeiro

Nanotechnology is a newly emerging field, posing substantial impacts on society, economy, and the environment. In recent years, the development of nanotechnology has led to the design and large-scale production of many new materials and devices with a vast range of applications. However, along with the benefits, the use of nanomaterials raises many questions and generates concerns due to the possible health-risks and environmental impacts. This chapter provides an overview of the Quantitative Structure-Activity Relationships (QSAR) studies performed so far towards predicting nanoparticles' environmental toxicity. Recent progresses on the application of these modeling studies are additionally pointed out. Special emphasis is given to the setup of a QSAR perturbation-based model for the assessment of ecotoxic effects of nanoparticles in diverse conditions. Finally, ongoing challenges that may lead to new and exciting directions for QSAR modeling are discussed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2090
Author(s):  
Bruno Baptista ◽  
Rita Carapito ◽  
Nabila Laroui ◽  
Chantal Pichon ◽  
Fani Sousa

The perspective of using messenger RNA (mRNA) as a therapeutic molecule first faced some uncertainties due to concerns about its instability and the feasibility of large-scale production. Today, given technological advances and deeper biomolecular knowledge, these issues have started to be addressed and some strategies are being exploited to overcome the limitations. Thus, the potential of mRNA has become increasingly recognized for the development of new innovative therapeutics, envisioning its application in immunotherapy, regenerative medicine, vaccination, and gene editing. Nonetheless, to fully potentiate mRNA therapeutic application, its efficient production, stabilization and delivery into the target cells are required. In recent years, intensive research has been carried out in this field in order to bring new and effective solutions towards the stabilization and delivery of mRNA. Presently, the therapeutic potential of mRNA is undoubtedly recognized, which was greatly reinforced by the results achieved in the battle against the COVID-19 pandemic, but there are still some issues that need to be improved, which are critically discussed in this review.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


Sign in / Sign up

Export Citation Format

Share Document