scholarly journals Expanding forests in alpine regions: space-for-time indicates a corresponding shift in belowground fungal communities

Author(s):  
Lea-Rebekka Tonjer ◽  
Ella Thoen ◽  
Luis Morgado ◽  
Synnøve Smebye Botnen ◽  
Sunil Mundra ◽  
...  

Climate change causes upward shift of forest lines worldwide, with consequences on soil biota and carbon (C). Using a space-for-time approach, we analyse compositional changes in the soil biota across the forest line ecotone, an important transition zone between different ecosystems. We collected soil samples along transects stretching from subalpine mountain birch forests to low-alpine vegetation. Soil fungi and micro-eukaryotes were surveyed using DNA metabarcoding of the 18S and ITS2 markers, while ergosterol was used to quantify fungal biomass. We observed a strong shift in the soil biota across the forest line ecotone: Below the forest line, there were higher proportions of basidiomycetes and mucoromycetes, including ectomycorrhizal and saprotrophic fungi. Above, we observed relatively more root-associated ascomycetes, including Archaeorhizomycetes, ericoid mycorrhizal fungi and dark septate endophytes. Ergosterol and percentage C content in soil strongly and positively correlated with the abundance of root-associated ascomycetes. The predominance of ectomycorrhizal and saprotrophic fungi below the forest line likely promote high C turnover, while root-associated ascomycetes above the forest line may enhance C sequestration. With further rise in forest lines, there will be a corresponding shift in the belowground biota linked to C sequestration processes.

Author(s):  
Vincenza Cozzolino ◽  
Hiarhi Monda ◽  
Davide Savy ◽  
Vincenzo Di Meo ◽  
Giovanni Vinci ◽  
...  

Abstract Background Increasing the presence of beneficial soil microorganisms is a promising sustainable alternative to support conventional and organic fertilization and may help to improve crop health and productivity. If the application of single bioeffectors has shown satisfactory results, further improvements may arise by combining multiple beneficial soil microorganisms with natural bioactive molecules. Methods In the present work, we investigated in a pot experiment under greenhouse conditions whether inoculation of two phosphate-solubilizing bacteria, Pseudomonas spp. (B2) and Bacillus amyloliquefaciens (B3), alone or in combination with a humic acids (HA) extracted from green compost and/or a commercial inoculum (M) of arbuscular mycorrhizal fungi (AMF), may affect maize growth and soil microbial community. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis were performed to detect changes in the microbial community composition. Results Plant growth, N and P uptake, and mycorrhizal root colonization were found to be larger in all inoculated treatments than in the uninoculated control. The greatest P uptake was found when B. amyloliquefaciens was applied in combination with both HA and arbuscular mycorrhizal fungi (B3HAM), and when Pseudomonas was combined with HA (B2HA). The PLFA-based community profile revealed that inoculation changed the microbial community composition. Gram+/Gram− bacteria, AMF/saprotrophic fungi and bacteria/fungi ratios increased in all inoculated treatments. The greatest values for the AMF PLFA marker (C16:1ω5) and AMF/saprotrophic fungi ratio were found for the B3HAM treatment. Permutation test based on DGGE data confirmed a similar trend, with most significant variations in both bacterial and fungal community structures induced by inoculation of B2 or B3 in combination with HA and M, especially in B3HAM. Conclusions The two community-based datasets indicated changes in the soil microbiome of maize induced by inoculation of B2 or B3 alone or when combined with humic acids and mycorrhizal inoculum, leading to positive effects on plant growth and improved nutrient uptake. Our study implies that appropriate and innovative agricultural management, enhancing the potential contribution of beneficial soil microorganisms as AMF, may result in an improved nutrient use efficiency in plants.


2014 ◽  
Vol 94 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
F. L. Walley ◽  
A. W. Gillespie ◽  
Adekunbi B. Adetona ◽  
J. J. Germida ◽  
R. E. Farrell

Walley, F. L., Gillespie, A. W., Adetona, A. B., Germida, J. J. and Farrell, R. E. 2014. Manipulation of rhizosphere organisms to enhance glomalin production and C-sequestration: Pitfalls and promises. Can. J. Plant Sci. 94: 1025–1032. Arbuscular mycorrhizal fungi (AMF) reportedly produce glomalin, a glycoprotein that has the potential to increase soil carbon (C) and nitrogen (N) storage. We hypothesized that interactions between rhizosphere microorganisms, such as plant growth-promoting rhizobacteria (PGPR), and AMF, would influence glomalin production. Our objectives were to determine the effects of AMF/PGPR interactions on plant growth and glomalin production in the rhizosphere of pea (Pisum sativum L.) with the goal of enhancing C and N storage in the rhizosphere. One component of the study focussed on the molecular characterization of glomalin and glomalin-related soil protein (GRSP) using complementary synchrotron-based N and C X-ray absorption near-edge structure (XANES) spectroscopy, pyrolysis field ionization mass spectrometry (Py-FIMS), and proteomics techniques to characterize specific organic C and N fractions associated with glomalin production. Our research ultimately led us to conclude that the proteinaceous material extracted, and characterized in the literature, as GRSP is not exclusively of AMF origin. Our research supports the established concept that GRSP is important to soil quality, and C and N storage, irrespective of origin. However, efforts to manipulate this important soil C pool will remain compromised until we more clearly elucidate the chemical nature and origin of this resource.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau4578 ◽  
Author(s):  
Marina Semchenko ◽  
Jonathan W. Leff ◽  
Yudi M. Lozano ◽  
Sirgi Saar ◽  
John Davison ◽  
...  

Feedbacks between plants and soil microbial communities play an important role in vegetation dynamics, but the underlying mechanisms remain unresolved. Here, we show that the diversity of putative pathogenic, mycorrhizal, and saprotrophic fungi is a primary regulator of plant-soil feedbacks across a broad range of temperate grassland plant species. We show that plant species with resource-acquisitive traits, such as high shoot nitrogen concentrations and thin roots, attract diverse communities of putative fungal pathogens and specialist saprotrophs, and a lower diversity of mycorrhizal fungi, resulting in strong plant growth suppression on soil occupied by the same species. Moreover, soil properties modulate feedbacks with fertile soils, promoting antagonistic relationships between soil fungi and plants. This study advances our capacity to predict plant-soil feedbacks and vegetation dynamics by revealing fundamental links between soil properties, plant resource acquisition strategies, and the diversity of fungal guilds in soil.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jana Albrechtova ◽  
Ales Latr ◽  
Ludovit Nedorost ◽  
Robert Pokluda ◽  
Katalin Posta ◽  
...  

The aim of this paper was to test the use of dual microbial inoculation with mycorrhizal and saprotrophic fungi in onion cultivation to enhance yield while maintaining or improving the nutritional quality of onion bulbs. Treatments were two-factorial: (1) arbuscular mycorrhizal fungi (AMF): the mix corresponding to fungal part of commercial product Symbivit (Glomus etunicatum, G. microaggregatum, G. intraradices, G. claroideum, G. mosseae, and G. geosporum) (M1) or the single-fungus inoculum ofG. intraradicesBEG140 (M2) and (2) bark chips preinoculated with saprotrophic fungi (mix ofGymnopilussp.,Agrocybe praecox, andMarasmius androsaceus) (S). The growth response of onion was the highest for the M1 mix treatment, reaching nearly 100% increase in bulb fresh weight. The effectiveness of dual inoculation was proved by more than 50% increase. We observed a strong correlation (r=0.83) between the growth response of onion bulbs and AM colonization. All inoculation treatments but the single-fungus one enhanced significantly the total antioxidant capacity of bulb biomass, was the highest values being found for M1,S+M1, andS+M2. We observed some induced enhancement of the contents of mineral elements in bulb tissue (Mg and K contents for the M2 and M2, S, andS+M2treatments, resp.).


2008 ◽  
Vol 54 (8) ◽  
pp. 595-599 ◽  
Author(s):  
Dana L. Richter

Vegetatively colonized agar cores of 69 basidiomycete fungus isolates (48 species in 30 genera and 17 families) were stored at 5 °C in tubes of sterile distilled water without manipulation for 20 years. These were represented by 34 isolates of saprotrophic fungi (29 species in 19 genera) and 35 isolates of mycorrhizal fungi (19 species in 11 genera). Viability was evaluated based on revived growth on agar media at room temperature. Fifty-seven of the 69 isolates (82.6%) grew vigorously when revived after storage for 20 years; of the 34 saprotrophic fungus isolates, 30 revived (88.2%); of the 35 mycorrhizal fungus isolates, 27 revived (77.1%). Thirteen isolates of Laccaria were all viable after 20 years, indicating cold storage in sterile water to be a good method for maintaining this important genus of mycorrhizal fungi. In general, however, mycorrhizal fungus species demonstrated lower viability than saprotrophic fungi.


2021 ◽  
Author(s):  
Camila DUARTE Duarte Ritter ◽  
Dominik Forster ◽  
Josue A. R. Azevedo ◽  
Alexandre Antonelli ◽  
R. Henrik Nilsson ◽  
...  

Abstract Species may co-occur due to responses to similar environmental conditions, biological associations, or simply because of coincident geographical distributions. Disentangling patterns of co-occurrence and potential biotic and abiotic interactions is crucial to understand ecosystem function. Here we used DNA metabarcoding data from litter and mineral soils collected from a longitudinal transect in Amazonia to explore patterns of co-occurrence. We compared data from different Amazonian habitat types, each with a characteristic biota and environmental conditions. These included non-flooded rainforests (terra-firme), forests seasonally flooded by fertile white waters (várzeas) or by unfertile black waters (igapós), and open areas associated with white sand soil (campinas). We ran co-occurrence network analyses based on null models and Spearman correlation for all samples and for each habitat separately. We found that one third of all operational taxonomic units (OTUs) were bacteria and two thirds were eukaryotes. The resulting networks were nevertheless mostly composed of bacteria, with fewer fungi, protists, and metazoans. Considering the functional traits of the OTUs, there is a combination of metabolism modes including respiration and fermentation for bacteria, and a high frequency of saprotrophic fungi (those that feed on dead organic matter), indicating a high turnover of organic material. The organic carbon and base saturation indices were important in the co-occurrences in Amazonian networks, whereas several other soil properties were important for the co-exclusion. Different habitats had similar network properties with some variation in terms of modularity, probably associated with flooding pulse. We show that Amazonian micro-organism communities form highly interconnected co-occurrence and co-exclusion networks, which highlights the importance of complex biotic and abiotic interactions in explaining the outstanding biodiversity of the region.


Sign in / Sign up

Export Citation Format

Share Document