scholarly journals Spatiotemporal impact of antecedent drought on hot extremes from the nonstationary risk perspective: A case study in eastern China

Author(s):  
Pengcheng Xu ◽  
Dong Wang ◽  
Yuankun Wang ◽  
Vijay Singh ◽  
Jianchun Qiu ◽  
...  

Hot extremes may adversely impact human health and agricultural production. Owing to anthropogenic and climate changes, the close and dynamic interaction between drought and hot extremes in most areas of China need to be revisited from the perspective of nonstationarity. This study therefore proposes a time-varying Copula-based model to describe the nonstationary dependence structure of extreme temperature (ET) and antecedent soil moisture condition to quantify the dynamic risk of hot extremes conditioned on dry/wet condition. This study proposed a new approach to identify the soil moisture driving law over extreme temperature from the point view of tail monotonicity and nonstationary risk assessment. Owing to the LTI-RTD (left tail increasing and right tail decreasing) tail monotonicity for dependence structure of these two extremes derived from most areas, the driving laws of soil moisture over ET follows DDL1-WDL1 laws (DDL1: drier antecedent soil moisture condition would trigger a higher risk of ET; WDL1: wetter antecedent soil moisture condition would alleviate the occurrence risk of ET). Because of the spatiotemporal divergence of sensitivity index derived from tail monotonicity (SITM), we can conclude that the spatial and temporal heterogeneity of response degree of ET over the variations of antecedent dry/wet conditions is evident. Incorporation of nonstationarity and tail monotonicity helps identify the changes of driving mechanism (laws) between soil moisture and hot extremes. From the comparison of different kinds of nonstationary behaviours over the spatial distribution of conditional probability of ET (CP1), the dependence nonstationarity can impose greater variations on the spatial distribution of conditional risk of ET given antecedent dry condition (CP1).

2017 ◽  
Vol 13 (3) ◽  
pp. 228
Author(s):  
Sasmito Sasmito ◽  
Bambang Triatmodjo ◽  
Joko Sujono ◽  
Sri Harto, Br

Abstrak: Hidrograf satuan adalah salah satu cara untuk memperkirakan besarnya banjir di sungai akibat hujan pada suatu DAS. Hidrograf satuan sangat populer dan dipakai secara luas di dunia. Metode ini mempunyai fleksibilitas yang rendah terhadap hujan yang berbeda, sehingga hidrograf yang dihasilkan berbeda-beda pada setiap hujan. Hal ini diduga disebabkan antara lain karena teori hidrograf satuan mengabaikan pengaruh kondisi awal kelengasan tanah (antecedent soil moisture condition, AMC) pada proses penurunan hidrograf satuan. Tulisan ini menyajikan hasil penelitian tentang pengaruh AMC terhadap debit puncak hidrograf satuan observasi (qp-obs). Dalam penelitian ini variabel AMC didekati dengan besaran defisit kelengasan tanah (soil moisture deficit, SMD) yang mempunyai makna berlawanan dengan AMC. SMD direpresentasikan dengan variabel Sc (storage capacity) yakni volume udara di dalam pori tanah yang ditinggalkan air karena terevapotranspirasi keluar. Penelitian dilaksanakan dengan menggunakan data hidrologi (hujan, debit aliran, dan evaporasi) yang dikumpulkan dari 3 DAS hulu (upper catchment) di kawasan Gunung Merapi. Percobaan penelitian dilakukan dengan cara menurunkan hidrograf satuan dengan dua cara, yakni cara konvensional (Collins) menghasilkan hidrograf satuan observasi (HSosb), dan cara simulasi menggunakan model tangki menghasilkan hidrograf satuan simulasi (HSsim). Analisis pengaruh Sc dilakukan terhadap debit puncak HSosb dan debit puncak HSsim. Penelitian menghasilkan temuan yang dapat disimpulkan sebagai berikut: (1) Hubungan Sc dan debit puncak hidrograf satuan, menunjukkan semakin besar Sc (semakin kecil AMC) debit puncak HSobs semakin kecil, (2) Formula koreksi yang didapat berbentuk fungsi eksponensial (qp-obs)/(qp-obs-kor)=1,104 e-0,012Sc, dengan qp-obs-kor adalah debit puncak hidrograf satuan observasi terkoreksi, (3)  HS observasi terkoreksi rerata mempunyai debit puncak puncak paling tinggi dibanding debit puncak HSS Nakayasu dan debit puncak HSS Gama 1.


2021 ◽  
Author(s):  
Bassey Bassey Friday ◽  
Eunhyung Lee ◽  
Sanghyun Kim

<p>The hysteretic behavior between soil moisture and streamflow has received only little attention in the context of hillslope hydrological processes, despite the overarching role it plays in the understanding of the temporal and spatial dynamics of hillslope responses. In this study, hydro-meteorological data were collected daily on bi-hourly basis from 2009 to 2013 over 56 soil moisture measuring points at various depths (10, 30, and 60 cm) with 147 distinct storm events chosen for investigation. A bivariate analysis approach was implemented to characterize 8,232 hysteretic behaviors between streamflow and soil moisture with a view to exploring its patterns and uniformities using data obtained in the following timescale - the whole period of campaign, seasonally and storm event. In addition, hydrological control features such as antecedent soil moisture, rainfall intensity and duration, soil depth and hillslope positions were examined to establish the degree of control it poses on hillslope responses. Our investigation showed three dominant responses – clockwise, counter-clockwise and no response. Clockwise response which implied that streamflow peaked before soil moisture, governed the entire period of campaign with the frequency of responses significantly decreasing as depth increases, except for some downslope points located around the riparian zone. Furthermore, distinct variation in the hysteretic behavior of the hillslope under seasonal timescale was observed, with clockwise responses dominating summer and fall season whereas counter clockwise responses prevailed in the spring season. Our findings further reveals that antecedent soil moisture condition and soil depth were the major drivers that influenced the general response of the hillslope.</p>


2021 ◽  
Author(s):  
Ascanio Rosi ◽  
Antonio Monni ◽  
Angela Gallucci ◽  
Nicola Casagli

<p>Rainfall induced landslide is one of the most common hazards worldwide and it is responsible every year of huge losses, both economic and social. <br>Because of the high impact of this kind of natural hazard, the forecasting of the meteorological condition associated with the initiation of landslide has become paramount in the recent years and several papers addressing this issue have been published.<br>When working over large areas, the definition of rainfall thresholds is the most used approach, since it requires few data that can be easily retrieved: landslide triggering date and location and rainfall recording associated to landslide events.<br>The intensity-duration threshold is the most used approach and it showed over the time its potential to be implemented in an operative landslide early warning system (LEWS), but literature papers showed that this approach is affected by a main drawback, i.e., the high number of false positives (events that are not capable of triggering landslides are classified as landslide triggering events).<br>To overcome this problem several authors tried to combine these thresholds with other parameters and recently one of the most promising approach is the use of the antecedent soil moisture condition, but this parameter is note very easily available for large areas and it is difficult to retrieve it in real time, so as it can be used in a LEWS.<br>In our work we used antecedent rainfall to simulate the progressive saturation of the soil and then the soil moisture condition associated with the initiation of landslides.<br>In a given area the total rainfall recorded by each rain gauge over a defined period of time prior the landslide is considered and used to define a parameter named MeAR (Mean Antecedent Rainfall), which represent the mean rainfall of the area over a given time interval, as recorded by all the active rain gauges.<br>The MeAR parameter has been coupled with classical I-D thresholds to define 3D thresholds, where the conditions associated with the initiation of a landslide are defined by a portion of a 3D space, instead of a portion of a 2D plane. This approach has been tested in Emilia-Romagna region (Italy) and it resulted the possibility of reducing false positives from 30% up to 80% on different areas.</p>


2013 ◽  
Vol 13 (5) ◽  
pp. 1202-1208
Author(s):  
C. W. Baek ◽  
N. Coles

A roaded catchment (RC) is a representative type of artificial catchment for rainwater harvesting. The rainfall–runoff threshold value of the RC is the main factor which influences the system efficiency and cost. Antecedent soil moisture condition is an important factor which impacts on the determination of the rainfall–runoff threshold value. In this study, rainfall–antecedent soil moisture condition–runoff relationships and the potential efficiency of RCs are presented. Rainfall and runoff data monitored at research sites in Merredin and Mount Barker are used to determine this relationship. Two antecedent moisture criteria; Antecedent Moisture Conditions (AMC) and Average Antecedent Precipitation (AAP) are used to analyse the relationship between previous rainfall and soil moisture for each RC. Monitored results show that AMC is not that suitable to show the relationship between rainfall and antecedent soil moisture condition of the RC in the dryland of Western Australia and it is recommended to use AAP to determine this relationship.


2012 ◽  
Author(s):  
Raheleh Malekian ◽  
Robert Gordon ◽  
Ali Madani ASABE Member ◽  
Seyyed Ebrahim Hashemi

1979 ◽  
Vol 27 (3) ◽  
pp. 191-198
Author(s):  
J.H. Smelt ◽  
A. Dekker ◽  
M. Leistra

The decomposition of oxamyl in four soils under moist conditions was measured in incubation experiments at 15 deg C. Half-lives of oxamyl in soils with moisture tensions of approx. -9.8 X 103 Pa were 13 days in a clay loam, 14 days in a loamy sand, 34 days in a peaty sand and 39 days in a humic loamy sand. The rate of oxamyl decomposition in the clay loam decreased with decreasing soil moisture content down to values for below wilting point. Oxamyl decomposition in the humic loamy sand decreased with decreasing soil moisture content, but increased sharply in the very dry range. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
Tiago de M. Inocêncio ◽  
Alfredo Ribeiro Neto ◽  
Alzira G. S. S. Souza

ABSTRACT The sequence of drought events in the Northeast of Brazil in recent decades raises attention to the importance of studying this phenomenon. The objective of this study was to evaluate the duration and severity of drought events from 1988 to 2018 in hydrographic basins of the state of Pernambuco, Brazil, using two drought indexes: Standardized Soil Moisture Index and Soil Moisture Condition Index, calculated based on data of the Soil Moisture Project of the European Space Agency’s Climate Change Initiative. The duration of the droughts was determined considering the months between their beginning and end, and their severity was based on the area formed in the graph between the curve of the index and the x-axis. The soil moisture database showed to be a promising tool for the analysis and monitoring of drought events in the Northeast region of Brazil, mainly for analysis and monitoring of drought events. The indexes allowed the evaluation of the drought phenomenon over the 30-year period, showing increases from 2012, which were more pronounced in the Semiarid region. The hydrographic basins responded differently to a same event, depending on the climate characteristics of the region in which they are located. Consecutive years with rainfall below the historical mean increased the magnitude of the droughts, as found for the 2012-2017 period, in which the indexes presented delays to return to more favorable values, showing the effect that one drought year has on the following year.


Geosciences ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 238
Author(s):  
Kenta Iwasaki ◽  
Makoto Tamura ◽  
Hirokazu Sato ◽  
Kazuhiko Masaka ◽  
Daisuke Oka ◽  
...  

The development of a method to easily investigate the spatial distribution of soil moisture and soil hardness in tree windbreaks is necessary because these windbreaks often decline due to inappropriate soil moisture condition and soil compaction. This research examined the applicability of ground-penetrating radar (GPR) and a combined penetrometer–moisture probe (CPMP) for evaluating the spatial distribution of soil moisture and soil hardness in four windbreaks with different soil characteristics. A GPR-reflecting interface was observed at a less permeable layer in a coastal windbreak and at a depth affected by soil compaction in an inland windbreak with andosol. The spatial distribution of the groundwater table could also be evaluated by examining the attenuation of GPR reflection in a coastal windbreak. In contrast, GPR was not applicable in an inland windbreak with peat because of high soil water content near the soil surface. The CPMP could detect vertical distributions of soil hardness and soil water content regardless of soil type. The CPMP was useful for interpreting GPR profiles, and GPR was useful for interpolating the information about the horizontal distribution of soil moisture and soil hardness between survey points made with the CPMP. Thus, the combination of GPR and a CPMP is ideal for examining the two-dimensional spatial distribution of soil moisture and soil hardness at windbreaks with soils for which both methods are applicable.


Sign in / Sign up

Export Citation Format

Share Document