scholarly journals Prenatal findings of 2q13 Duplication and Deletion: Further Evidence for Lack of Phenotypic-Genotype Correlation

Author(s):  
Lu Li ◽  
Xiuzhu Huang ◽  
Mei Ye ◽  
Jieping Chen ◽  
Zhipeng Zeng ◽  
...  

2q13 CNV was associated with various diseases, with a lack of consensus. By CMA analysis, we found that four fetuses had deletion in the proximal region of 2q13, one had duplication, and one had duplication in the distal region of 2q13; however, they had variable outcomes.

2005 ◽  
Vol 19 (9) ◽  
pp. 2320-2334 ◽  
Author(s):  
Amena Archer ◽  
Dominique Sauvaget ◽  
Valérie Chauffeton ◽  
Pierre-Etienne Bouchet ◽  
Jean Chambaz ◽  
...  

Abstract In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4α and γ. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4α repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4α and γ functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.


2005 ◽  
Vol 19 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Amandine Gautier-Stein ◽  
Gilles Mithieux ◽  
Fabienne Rajas

Abstract Glucose-6-phosphatase (Glc6Pase) is the last enzyme of gluconeogenesis and is only expressed in the liver, kidney, and small intestine. In these tissues, the mRNA and its activity are increased when cAMP levels increased (e.g. in fasting or diabetes). We first report that a proximal region (within −200 bp relative to the transcription start site) and a distal region (−694/−500 bp) are both required for a potent cAMP and a protein kinase A (PKA) responsiveness of the Glc6Pase promoter. Using different molecular approaches, we demonstrate that hepatocyte nuclear factor (HNF4α), CAAT/ enhancer-binding protein-α (C/EBPα), C/EBPβ, and cAMP response element-binding protein (CREB) are involved in the potentiated PKA responsiveness: in the distal region, via one HNF4α- and one C/EBP-binding sites, and in the proximal region, via two HNF4α and two CREB-binding sites. We also show that HNF4α, C/EBPα, and C/EBPβ are constitutively bound to the endogenous Glc6Pase gene, whereas CREB and CREB-binding protein (CBP) will be bound to the gene upon stimulation by cAMP. These data strongly suggest that the cAMP responsiveness of the Glc6Pase promoter requires a tight cooperation between a proximal and a distal region, which depends on the presence of several HNF4α-, C/EBP-, and CREB-binding sites, therefore involving an intricate association of hepatic and ubiquitous transcription factors.


1990 ◽  
Vol 10 (9) ◽  
pp. 4690-4700
Author(s):  
B Peers ◽  
M L Voz ◽  
P Monget ◽  
M Mathy-Hartert ◽  
M Berwaer ◽  
...  

We have performed transfection and DNase I footprinting experiments to investigate pituitary-specific expression of the human prolactin (hPRL) gene. When fused to the chloramphenicol acetyltransferase (CAT) reporter gene, 5,000 base pairs of the 5'-flanking sequences of the hPRL gene were able to drive high cat gene expression in prolactin-expressing GH3B6 cells specifically. Deletion analysis indicated that this pituitary-specific expression was controlled by three main positive regulatory regions. The first was located just upstream from the TATA box between coordinates -40 and -250 (proximal region). We have previously shown that three motifs of this region bind the pituitary-specific Pit-1 factor. The second positive region was located in the vicinity of coordinates -1300 to -1750 (distal region). DNase I footprinting assays revealed that eight DNA motifs of this distal region bound protein Pit-1 and that two other motifs were recognized by ubiquitous factors, one of which seems to belong to the AP-1 (jun) family. The third positive region was located further upstream, between -3500 and -5000 (superdistal region). This region appears to enhance transcription only in the presence of the distal region.


1991 ◽  
Vol 156 (1) ◽  
pp. 63-80 ◽  
Author(s):  
C. Shingyoji ◽  
I. R. Gibbons ◽  
A. Murakami ◽  
K. Takahashi

The heads of live spermatozoa of the sea urchin Hemicentrotus pulcherrimus were held by suction in the tip of a micropipette mounted on a piezoelectric device and vibrated either laterally or axially with respect to the head axis. Within certain ranges of frequency and amplitude, lateral vibration of the pipette brought about a stable rhythmic beating of the flagella in the plane of vibration, with the beat frequency synchronized to the frequency of vibration [Gibbons et al. (1987), Nature 325, 351–352]. The sperm flagella, with an average natural beat frequency of 48 Hz, showed stable beating synchronized to the pipette vibration over a range of 35–90 Hz when the amplitude of vibration was about 20 microns or greater. Vibration frequencies below this range caused instability of the beat plane, often associated with irregularities in beat frequency. Frequencies above about 90 Hz caused irregular asymmetrical flagellar beating with a marked decrease in amplitude of the propagated bends and a skewing of the flagellar axis towards one side; the flagella often stopped in a cane shape. In flagella that were beating stably under imposed vibration, the wavelength was reduced at higher frequencies and increased at lower frequencies. When the beat frequency was equal to or lower than the natural beat frequency, the apparent time-averaged sliding velocity of axonemal microtubules, obtained as twice the product of frequency and bend angle, decreased with beat frequency in both the proximal and distal regions of the flagella. However, at vibration frequencies above the natural beat frequency, the sliding velocity increased with frequency only in the proximal region of the flagellum and remained essentially unchanged in more distal regions. This apparent limit to the velocity of sliding in the distal region may represent an inherent limit in the intrinsic velocity of active sliding, while the faster sliding observed in the proximal region may be a result of passive sliding or elastic distortion of the microtubules induced by the additional energy supplied by the vibrating pipette. Axial vibration with frequencies either close to or twice the natural beat frequency induced cyclic changes in the waveform, compressing and expanding the bends in the proximal region, but did not affect bends in the distal region or alter the beat frequency.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 840 ◽  
Author(s):  
Roohollah Milimonfared ◽  
Reza Oskouei ◽  
Mark Taylor ◽  
Lucian Solomon

Metallic taper junctions of modular total hip replacement implants are analysed for corrosion damage using visual scoring based on different granularity levels that span from analysing the taper holistically to dividing the taper into several distinct zones. This study aims to objectively explore the spatial distribution and the severity of corrosion damage onto the surface of metallic stem tapers. An ordinal logistic regression model was developed to find the odds of receiving a higher score at eight distinct zones of 137 retrieved stem tapers. A method to find the order of damage severity across the eight zones is introduced based on an overall test of statistical significance. The findings show that corrosion at the stem tapers occurred more commonly in the distal region in comparison with the proximal region. Also, the medial distal zone was found to possess the most severe corrosion damage among all the studied eight zones.


Author(s):  
Indra Raymond Salindeho ◽  
Danielle Jane Johnston

Mouthpart and proventriculus structure of the brachyuran crab Nectocarcinus tuberculosus was described by scanning electron microscopy and histology and characteristics indicative of dietary preferences were identified. A qualitative stomach content analysis was conducted to verify structural interpretations with respect to diet. The mouthparts and proventriculus of N. tuberculosus have features that are typical of macrophagous crabs and are consistent with a carnivorous diet of hard items. However, the mandibular arrangement indicates that N. tuberculosus is also adapted to ingest soft plant material and fleshy items, revealing that this crab is omnivorous which is consistent with its habitat of rocky shores and sea grass beds. Carnivorous features of the feeding apparatus include large crista dentata on the third maxillipeds that grip food items during ingestion and cuspidate setae on the second maxillipeds and first maxillae. Nectocarcinus tuberculosus has a complex arrangement of proventricular ossicles, 5-denticulated accessory teeth, and a spiny cardio-pyloric valve with rough, calcified protuberances. It has a robust, strongly calcified gastric mill with a prominent anterior cusp and 11 roughly surfaced vertical ridges on each lateral tooth specialized for crushing and grinding. In contrast to true carnivorous crabs, the mandibles in this species are symmetrically arranged, with two sharp cutting edges and no teeth, an arrangement adapted to cut softer plant-like materials and flesh. Structural interpretations with respect to diet were confirmed by stomach content analysis where items identified included gastropods, bivalves and the sea grass Posidonia australis. Functionally, the filtering system in the proventriculus of N. tuberculosus is complex. The cardiac stomach has a well developed ventral filtration system or ‘cardiac filter’ which comprises coarse and fine filters. Different modifications of setation between the distal and proximal regions of the inner valve of the pyloric filter are unique to this crab species, with an intersetule width 600 nm in the distal region and 80–100 nm in the proximal region. This suggests that some differentiation in filtration occurs between regions within the pyloric filter.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 359-365 ◽  
Author(s):  
PG Gallagher ◽  
M Romana ◽  
JH Lieman ◽  
DC Ward

Band 7.2b is an integral phosphoprotein absent from the erythrocyte membranes of patients with hydrocytosis, an autosomal, dominantly inherited, hemolytic anemia characterized by stomatocytic red blood cells with abnormal permeability to Na+ and K+. The role of this protein in the erythrocyte membrane is not well understood. To gain additional insight into the structure and function of this protein, we have cloned the murine band 7.2b cDNA and studied its tissue-specific expression. 2,873 bp of cDNA with an open reading frame of 852 bp were isolated. This fragment encodes a protein of 284 amino acids with a predicted molecular weight of 31 kD. The band 7.2b gene had a wide pattern of expression, with high levels of mRNA in heart, liver, skeletal muscle, and testis and low levels in lung, brain, and spleen. Using fluorescent in situ hybridization, the murine band 7.2b gene was mapped to chromosome 2, at the border of the distal region of 2B and proximal region of C1, syntenic to 9q33-q34, the location of the human homologue. Models of the predicted protein structure showed a short NH2- terminal head, a strongly hydrophobic 28-amino acid stretch presumably encoding a single membrane-spanning domain, and a large domain composed of beta sheet and alpha helix. Database searching showed no significant homology of other known proteins to murine or human band 7.2b.


2019 ◽  
Vol 121 (5) ◽  
pp. 1879-1895 ◽  
Author(s):  
Anne En-Tzu Yang ◽  
Hayley M. Belli ◽  
Mitra J. Z. Hartmann

Recent work has quantified the geometric parameters of individual rat vibrissae (whiskers) and developed equations that describe how these parameters vary as a function of row and column position across the array. This characterization included a detailed quantification of whisker base diameter and arc length as well as the geometry of the whisker medulla. The present study now uses these equations for whisker geometry to quantify several properties of the whisker that govern its mechanical behavior. We first show that the average density of a whisker is lower in its proximal region than in its distal region. This density variation appears to be largely attributable to the presence of the whisker cuticle rather than the medulla. The density variation has very little effect on the center of mass of the whisker. We next show that the presence of the medulla decreases the deflection of the whisker under its own weight and also decreases its mass moment of inertia while sacrificing <1% stiffness at the whisker base compared with a solid whisker. Finally, we quantify two dimensionless parameters across the array. First, the deflection-to-length ratio decreases from caudal to rostral: caudal whiskers are longer but deflect more under their own weight. Second, the nondimensionalized radius of gyration is approximately constant across the array, which may simplify control of whisking by the intrinsic muscles. We anticipate that future work will exploit the mechanical properties computed in the present study to improve simulations of the mechanosensory signals associated with vibrissotactile exploratory behavior. NEW & NOTEWORTHY The mechanical signals transmitted by a whisker depend critically on its geometry. We used measurements of whisker geometry and mass to quantify the center of mass, mass moment of inertia, radius of gyration, and deflection under gravity of the whisker. We describe how variations in these quantities across the array could enhance sensing behaviors while reducing energy costs and simplifying whisking control. Most importantly, we provide derivations for these quantities for use in future simulation work.


2008 ◽  
Vol 105 (4) ◽  
pp. 1312-1320 ◽  
Author(s):  
Ryuta Kinugasa ◽  
Dongsuk Shin ◽  
Junichiro Yamauchi ◽  
Chandan Mishra ◽  
John A. Hodgson ◽  
...  

The behavior of the entire medial gastrocnemius (MG) superficial and deep aponeurosis structure was investigated with velocity-encoded phase-contrast, spin-tag, and three-dimensional morphometric magnetic resonance imaging. The displacements and strain of both these aponeuroses, muscle length, and the cross-sectional segment length of the deep aponeurosis were measured during isometric plantarflexion at 20% and 40% of maximal voluntary contraction (MVC). The length of the entire MG shortened during 20% and 40% MVC. All regions of interest in both aponeuroses moved proximally. Positive strain (lengthening) occurred in both ends of the deep aponeurosis and in the proximal region of the superficial aponeurosis. In contrast, negative strain (shortening) was observed in the middle region of the deep aponeurosis and in the distal region of the superficial aponeurosis. Consistent with this shortening of the deep aponeurosis length along the proximal-distal axis was expansion of the aponeuroses in the medial-lateral and anterior-posterior directions in the cross-sectional plane. It is concluded that at low to moderate force levels of isometric contraction, regional differences in strain occur along the proximal-distal axis of both aponeuroses, and some regions of both aponeuroses shorten.


2008 ◽  
Vol 22 (3) ◽  
pp. 467-471 ◽  
Author(s):  
Peter J. Dittmar ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
Katherine M. Jennings

Studies were conducted in 2006 at Clinton and Kinston, NC, to determine the influence of halosulfuron POST (over the crop plant) or POST-directed (to the crop) on growth and yield of transplanted ‘Precious Petite’ and ‘Tri-X-313’ triploid watermelon. Treatments included a nontreated control, 39 g/ha halosulfuron applied POST-directed to 25% of the plant (distal or proximal region), POST-directed to 50% of the plant (distal or proximal; Precious Petite only), and POST. Watermelon treated with halosulfuron displayed chlorotic leaves, shortened internodes, and increased stem splitting. Vines were longest in the nontreated control (Tri-X-313 = 146 cm, Precious Petite = 206 cm) but were shortest in the POST treatment (Tri-X-313 = 88 cm, Precious Petite = 77 cm). Halosulfuron POST to watermelon caused the greatest injury (Tri-X-313 = 64%, Precious Petite = 67%). Halosulfuron directed to 25 or 50% (distal or proximal) of the plant caused less injury than halosulfuron applied POST. Stem splitting was greatest when halosulfuron was applied to the proximal area of the stem compared with POST-directed distal or POST. Internode shortening was greatest in treatments where halosulfuron was applied to the distal region of the stem. However, Tri-X-313 in the POST-directed 25% distal treatment produced similar total and marketable fruit weight as the nontreated control at Clinton. Fruit number did not differ among treatments for either cultivar. At Kinston, Precious Petite nontreated control and POST-directed 25% distal end treatment had greater marketable fruit weight than the POST-directed 50% proximal and POST treatments. The current halosulfuron registration allows POST application between rows or PRE. Limiting halosulfuron contact to no more than 25% of the watermelon plant will likely improve crop tolerance.


Sign in / Sign up

Export Citation Format

Share Document