scholarly journals Technology of electrospark hardening of cutting surface of feed mixer knives

Author(s):  
Sergey Strebkov ◽  
Alexey Slobodyuk ◽  
Andrey Bondarev
2019 ◽  
Vol 24 (94/4) ◽  
pp. 27-32
Author(s):  
T.S. Skoblo ◽  
I.N. Rybalko ◽  
A.V. Tihonov ◽  
T.V. Maltsev

The possibility of using a non-magnetic fraction of a detonation charge with a diamond fraction from the disposal of ammunition to modify the restoration coatings of a natural product – clay and secondary raw materials — was studied. Four different coating variants were investigated. For this, a T-620 electrode was used with its additional modification by coating with bentonite clay, as well as with a non-magnetic fraction of the detonation charge and applying it in the form of a slip coating on the cutting surface of the cultivator. It is shown that the use of such additives allows to increase the resistance of the working tool of agricultural machines, reduces its tendency to damage due to the minimum penetration of the thin-walled product of the hoe blade and a decrease in the cross section of the transition layer and the level of stress. Each modifier makes changes to increase the microhardness to varying degrees. An increase in microhardness is observed on the surface of the coating and its gradual decrease to the transition layer. The surface coating with the additional introduction of bentonite clay in a liquid bath has the highest microhardness. Its microhardness varies from HV-50-1009.7 to HV-50-615.2. Similarly, the effect of the modifying additive of the detonation charge, the microhardness varies from HV-50-969.6 to HV-50-633.26. When clay or a mixture is introduced into the restoration coating, the wear resistance increases by 1.3 - 2 times with respect to the deposited surfacing only by the electrode and by 2 - 3 times to the initial material of the cultivator. It was found that the lowest coefficient is characteristic for dry friction, as well as for hydroabrasive, for samples with additional modification with clay or a detonation charge


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2487
Author(s):  
Yanqing Gu ◽  
Hongwen Zhang ◽  
Xiuqing Fu ◽  
Lei Wang ◽  
Zhenyu Shen ◽  
...  

This study aimed to investigate the wear failure changes of spindle hook teeth and the reasons for such failure during field work. Spindle samples were obtained from a fixed position of the spindle bar under different field picking area conditions and combined with the spatial distribution characteristics of cotton bolls in Xinjiang. After cutting a spindle sample, a scanning electron microscope and an energy spectrum analyzer were used to characterize the micromorphology and element composition of the hook tooth surface and cross section under different working area conditions. The wear parameters of the hook teeth were then extracted. The results showed that the thickness of the coating on the surface of the hook tooth used in this study was between 66.1 µm and 74.4 µm. The major chemical element was chromium, with a small amount of nickel. During the field picking process, failure of the coating on the surface of the hook teeth initially appeared on the tooth tip and tooth edge, and then spread to the entire hook tooth surface. The wear failure of the hook teeth resulted from abrasive wear, oxidative wear, and fatigue peeling. As the picking area increased, the wear area of the hook teeth increased exponentially, while the wear width increased linearly. When the field picking area reached 533.33 ha, the maximum change rate of the wear area was 2.33 × 103 µm2/ha, and the wear width was 1.84 µm/ha. During field work, the thickness of the coating decreased from the cutting surface to the tooth edge, and the wear rate gradually increased. The wear rate at Position 1 was the slowest, at 0.01 µm/ha, and the wear rate at Position 5 was the fastest, at 0.25 µm/ha.


2011 ◽  
Vol 314-316 ◽  
pp. 1944-1947 ◽  
Author(s):  
Jozef Maščeník ◽  
Stefan Gaspar

Production of components, necessary for the construction of the machine resp. or device is a demanding manufacturing process. One of the possibilities of increasing efficiency and production quality is the introduction of unconventional technologies to the production process. Knowing the dependence of the impact of non-conventional technologies on the mechanical properties of products and their subsequent verification is an important aspect when designing and manufacturing them. The article deals with the impact of used unconventional technology, that means laser, plasma and water jet on the roughness of a cutting edge and microhardness of material S 355 J2 G3.


The Analyst ◽  
2016 ◽  
Vol 141 (20) ◽  
pp. 5784-5791 ◽  
Author(s):  
Qiang Su ◽  
Gilbert Nöll

Cutting surface-bound optical molecular beacons results in a sandwich-like detection strategy with lower background fluorescence.


2017 ◽  
Vol 107 (01-02) ◽  
pp. 81-86
Author(s):  
T. Stehle ◽  
B. Prof. Azarhoushang ◽  
D. Becker ◽  
R. Eisseler

Die Reibungsbedingungen bei der Zerspanung von verstärkten Faserverbundkunststoffen werden durch die Oberflächengestalt der Werkzeugschneide beeinflusst. In dieser Studie wurde CFK-UD (unidirektional carbonfaserverstärkter Kunststoff) im Streifenziehversuch mit geschliffenen und gestrahlten Testwerkzeugen bei 5 MPa Flächenpressung untersucht. Die Oberflächen der Testwerkzeuge sind durch bestimmte Rauheits- und Funktionsparameter charakterisiert, die sich auf die Gleitreibung der tribologischen Paarung CFK – Werkzeugschneide auswirken.   The friction conditions when cutting fiber-reinforced polymers are significantly influenced by the shape of the tool cutting surface. Hence, different strip drawing tests were carried out at a 5 MPa surface pressure to investigate the behavior of unidirectional CFRP with different test tool surface preparations. The tool surfaces were ground and blasted. The created surface topographies are characterized by particular parameters of roughness and function which affect the sliding friction of the CFRP / tool pair.


2014 ◽  
Vol 607 ◽  
pp. 612-615
Author(s):  
Jong Deok Kim ◽  
Hyun Jun Ko

Fine blanking is a press-working process that permits the production of precise, finished components which are cleanly sheared through the whole cutting surface. The manufacturing cost can be reduced because the secondary operations such as milling and broaching can be eliminated and the multistage combined stamping process can be added. The product cost can increase, however, while the precise fine blanking tool and high cost fine blanking press are required. Therefore it is important to design the fine blanking tool in view of the life expectancy of the punch. In this paper the fatigue simulation of fine blanking tool punch for automobile start motor flange was conducted using the commercial FEA software ANSYS. Initially, the material properties were tested and the fine blanking tool was designed for production experiments. The modelling of tool elements and the fatigue simulation according to repeated loads were conducted. As a result of fatigue simulation, the fine blanking tool punch for start motor flange had been fractured with 3,981 strokes. In the fine blanking production experiments, the fine blanking tool punch had to be regrinded after it was used with 3,425 strokes. It was also found that the fatigue simulation of fine blanking tool punch was conducted with an error of 14%.


2008 ◽  
Vol 389-390 ◽  
pp. 36-41
Author(s):  
Feng Wei Huo ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin

A 3D profiler based on scanning white light interferometry with a lateral sampling interval of 0.11μm was introduced to measure the surface topography of a #3000 diamond grinding wheel, and a large sampling area could be achieved by its stitching capability without compromising its lateral or vertical resolution. The protrusion height distribution of diamond grains and the static effective grain density of the grinding wheel were derived, and the wheel chatter and the deformation of the wheel were analyzed as well. The study shows that the grain protrusion height obeys an approximate normal distribution, the static effective grain density is much lower than the theoretical density, and only a small number of diamond grains are effective in the grinding process with fine diamond grinding wheel. There exists waviness on the grinding wheel surface parallel with the wheel cutting direction. The cutting surface of the grinding wheel is not flat but umbilicate, which indicates that the elastic deformation at the wheel edges is much larger than in the center region.


Sign in / Sign up

Export Citation Format

Share Document