scholarly journals Evaluation of insoluble xanthate and crosslinked starch-graft-polyacrylamide-co-sodium xanthate for the adsorption of Cu(II) in aqueous solutions

2015 ◽  
Vol 21 (4) ◽  
pp. 465-476
Author(s):  
Jun Tan ◽  
Xiaoyan Wei ◽  
Yuxia Ouyang ◽  
Rui Liu ◽  
Ping Sun ◽  
...  

The effectiveness of insoluble xanthate (ISX) and crosslinked starch-graft-polyacrylamide-co-sodium xanthate (CSAX) for Cu(II) removal from wastewater was evaluated. The two types of xanthates were characterized by SEM, XRD, FTIR, and elemental analysis. Also, the factors influencing adsorption behaviors of copper ions from aqueous solutions were investigated. The results indicated CSAX had higher absorption capacity for Cu(II) than ISX because it contained more N and S. While as far as the removal efficiency was concerned, ISX was better than CSAX for its strong ligand-CSS- groups. The removal efficiency of Cu(II) onto CSAX and ISX increased with the increase in pH. The mechanism for Cu(II) adsorption was ionic exchange for ISX whereas both ion exchange and physical adsorption contributed to adsorption by CSAX. The adsorption kinetics of ISX and CSAX for Cu(II) were favorably described by the pseudo-second-order kinetic model, and the adsorption isotherms were described well with the Freundlich isotherm model. The study with synthetic wastewater showed CSAX was a worthwhile alternative to the traditional ISX only when the wastewater contained both Cu(II) and turbidity.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1161
Author(s):  
Somayeh Rahdar ◽  
Abbas Rahdar ◽  
Mostafa Sattari ◽  
Laleh Divband Hafshejani ◽  
Athanasia K. Tolkou ◽  
...  

Dyes are known as one of the most dangerous industrial pollutants which can cause skin diseases, allergy, and provoke cancer and mutation in humans. Therefore, one of the important environmental issues is the effective removal of dyes from industrial wastewater. In the current work, BaFe12O19/CoFe2O4@polyethylene glycol (abbreviated as BFO/CFO@PEG) nanocomposite was synthesized and evaluated regarding its capacity for adsorptive removal of a model dye Acid Blue 92 (denoted as AB92) from aqueous solutions. The characteristics of the prepared nanocomposite was determined by tests such as X-ray diffraction (XRD), scanning electron microscope (SEM), vibration sample magnetization (VSM), and Fourier transform infrared spectroscopy (FTIR). The effects of conditional parameters including pH (2–12), initial concentration of dye (20–100 mg/L), adsorbent dosage (0.02–0.1 g/L) and contact time (0-180 min) on the adsorption of dye were investigated and then optimized. The results indicated that with the increase of the adsorbent dosage from 0.02 to 0.1 g/L, the removal efficiency increased from 74.1% to 78.6%, and the adsorbed amount decreased from 148.25 to 31.44 mg/g. The maximum removal efficiency (77.54%) and adsorption capacity (31.02 mg/g) were observed at pH 2. Therefore, the general optimization conditions revealed that the maximum adsorption efficiency of dye was obtained in condition of initial concentration of 20 mg/L, contact time of 1 h and pH of solution equal 2. The adsorption isotherm and kinetic data were evaluated using a series of models. The pseudo-second order kinetic model and Freundlich isotherm model show the best fitting with experimental data with R2∼0.999.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2017 ◽  
Vol 15 (6) ◽  
pp. 1015-1027 ◽  
Author(s):  
Olushola S. Ayanda ◽  
Simphiwe M. Nelana ◽  
Leslie F. Petrik ◽  
Eliazer B. Naidoo

Abstract The application of nano-TiO2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO2, respectively. The degradation of AAP by ultrasound followed by nano-TiO2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.


2014 ◽  
Vol 5 (2) ◽  
pp. 223-230
Author(s):  
Farid Moeinpour ◽  
Shohreh Kamyab

Magnetic NiFe2O4 nanoparticles have been synthesized and used as adsorbents for copper removal from aqueous solution. The NiFe2O4 nanoparticles were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The batch removal of Cu2+ ions from aqueous solutions using NiFe2O4 magnetic nanoparticles under different experimental conditions was investigated. The effects of initial concentration, adsorbent dose, contact time, and pH were investigated. The adsorption process was pH dependent, and the maximum adsorption was observed at a pH of 6.0. Equilibrium was achieved for copper ion after 25 min. Experimental results showed that NiFe2O4 magnetic nanoparticles are effective for the removal of copper ions from aqueous solutions. The pseudo-second-order kinetic model gave a better fit of the experimental data as compared to the pseudo-first-order kinetic model. Experimental data showed a good fit with the Langmuir isotherm model.


2018 ◽  
Vol 52 ◽  
pp. 54-70 ◽  
Author(s):  
Seyedeh Mahsa Seyed Danesh ◽  
Hossein Faghihian ◽  
Shahab Shariati

The sulfonic acid-functionalized KIT-6 magnetite mesoporous silica nanoparticles (Fe3O4@SiO2@KIT-6-SO3H NPs) were prepared as an adsorbent and used for the removal of methyl green from aqueous solutions. Characterization of the obtained adsorbent was done by FT-IR, SEM and EDX instruments. According to the experimental results, about 96.4 % of dye was removed from aqueous solutions at the adsorbent amount of 3.2 g L-1at pH = 3 and ionic strength = 0 during 10 min. The kinetic results indicated that the pseudo-second-order kinetic model was the best model for describing the adsorption kinetic ( = 0.9999). The isotherm analysis demonstrated that the equilibrium data were well fitted to the Freundlich isotherm model, showing a multilayer adsorption of the dye on the adsorbent surface. The maximum adsorption capacity for methyl green was obtained 196 mg g-1. Furthermore, the Fe3O4@SiO2-KIT-6-SO3H NPs could be simply recovered by external magnet and it exhibited recyclability and reusability for six cycles. The results showed that the Fe3O4@SiO2-KIT-6-SO3H NPs are appropriate adsorbent for removal of methyl green from real wastewater samples.


2019 ◽  
Vol 54 (4) ◽  
pp. 278-289 ◽  
Author(s):  
Bolanle M. Babalola ◽  
Adegoke O. Babalola ◽  
Habibat O. Adubiaro ◽  
Olushola S. Ayanda ◽  
Simphiwe M. Nelana ◽  
...  

Abstract The removal of Pb(II) ions from synthetic wastewater using Delonix regia pods and leaves as low-cost biosorbents was investigated. The elemental, morphological and phase characterization of Delonix regia pods and leaves were examined before and after biosorption. The adsorption process at various pH values, contact times, initial concentration of Pb(II) ions and adsorbent doses was studied with the aim of investigating the consequences of these parameters on the process of biosorption. The Langmuir adsorption isotherm provided the best fit for the experimental data of the pods while the Freundlich isotherm gave a better fit for the leaves of Delonix regia. The optimum adsorption capacity of 30.27 mg/g for the pods and 27.60 mg/g for the leaves was achieved when 0.5 g of the adsorbent was mixed with 20 mL of 1,000 mg/L Pb(II) ions solution for 30 min at 21 ± 2 °C and a stirring speed of 18 rpm. The data obtained from the time-dependent experiment of the biosorbents followed the pseudo-second-order kinetic model. This study showed that Delonix regia pods and leaves could be developed further as a low-cost sorbent that could be harnessed for removing Pb from industrial wastewater and thus limit water pollution from point sources.


2017 ◽  
Vol 75 (8) ◽  
pp. 1812-1819 ◽  
Author(s):  
Wenhong Tao ◽  
Ling Qi ◽  
Huimin Duan ◽  
Shiquan Liu

Nickel ions (Ni(II)) in aqueous solutions were removed by a sand adsorbent with a surface functionalized porous coating. The sand adsorbent has a very large surface area of 150 m2/g. The influence of pH, initial concentration of the solution, temperature, contact time and adsorbent dosage on the removal efficiency of the synthesized sand adsorbent toward Ni(II) in the aqueous solutions were studied. The results indicate that the adsorption of nickel onto the sand adsorbent greatly increases the pH range of 2–4 and slightly increases with temperature from 25 to 40 °C. The maximum removal efficiency and ion retention in per unit mass of the adsorbent were 100% and 5.78 mg/g, respectively, under the specified experimental conditions. The adsorption can be described by the pseudo-second-order kinetic model and the Freundlich adsorption model. The adsorbed nickel (4.24 mg/g) together with the spent adsorbent were successfully employed to prepare a brown glass, suggesting a new way to reutilize the recovered nickel from wastewater and to avoid secondary pollution caused by the used adsorbents.


2018 ◽  
Vol 20 (3) ◽  
pp. 95-102 ◽  
Author(s):  
Zhao Zhang ◽  
Yanhui Li ◽  
Qiuju Du ◽  
Qi Li

Abstract Soybean curd is a very popular food containing high-quality protein, polyunsaturated fats, vitamins, minerals and other nutrients. This study aims to prepare porous soybean curd xerogels via a vacuum freeze drying method and uses them as adsorbents to remove congo red from aqueous solutions. The morphology and functional groups of the soybean curd xerogels were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The adsorption properties of congo red onto the soybean curd xerogels were carried out through investigating the infl uencing experimental parameters such as the drying method, solution pH, adsorbent dose, contact time and temperature. The results showed that the adsorption isotherm data were fitted well to the Freundlich isotherm. Adsorption kinetics of congo red onto the soybean curd followed the pseudo-second-order kinetic model. The thermodynamic parameters, such as ΔG0, ΔH0 and ΔS0, were also determined.


2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


Sign in / Sign up

Export Citation Format

Share Document