scholarly journals Genetic characterisation of autochthonous sweet cherry genotypes (Prunus avium L.) using SSR markers

Genetika ◽  
2020 ◽  
Vol 52 (1) ◽  
pp. 43-53
Author(s):  
Tanja Krmpot ◽  
Ljubomir Rados ◽  
Ales Vokurka

The autochthonous local genotypes of sweet cherries, which represent a very important genetic potential for future breeding programs. Understanding of the molecular basis biodiversity is one of the most important factors for the proper conservation, management and use of plant genetic resources. This paper investigate the genetic variability of 14 genotypes of sweet cherries using 26 SSR markers. The study included eight autochthonous genotypes of sweet cherry taken from four different location and six virus-free reference varieties of sweet cherry. The average genetic distance between them was 0.43. The number of alleles per locus ranged from two to eight. The minimum number of two alleles of polymorphic loci showed EMPa003 and EMPa002, while the highest number of eight loci alleles had PceGA34 and UDP97-402. Results of genetic analysis that were done show that between autochthonous genotypes of sweet cherries ?Biljur-Bjelica?, ?Barevka? and ?Aslamka? (Kriskovci) there was no difference, it is to have the same genetic profil, which indicates that is the synonym, it is the same identity group. Also the autochthonous genotype ?Crveni Hrust? and ?Nordwunder? cultivar had the same SSR profile on microsatellite loci tested. The remaining autochthonous genotypes of sweet cherry had a unique genetic profile.

2004 ◽  
Vol 129 (4) ◽  
pp. 535-543 ◽  
Author(s):  
Cheol Choi ◽  
Frank Kappel

Inbreeding and coancestry coefficients were calculated for 66 sweet cherry (Prunus avium L.) selections released from four breeding programs in North America (HRIO, Vineland, Ont., IAREC, Prosser, Wash., NYSAES, Geneva, N.Y., and PARC, Summerland, B.C.). Highly used founding clones were `Black Heart', `Emperor Francis', `Empress Eugenie', `Napoleon' and `Windsor'. Coefficients of coancestry between all selections and these clones averaged 0.038, 0.045, 0.060, 0.091, and 0.033, respectively. In these five founding clones, coefficients of coancestry in self-compatible selections were over twice as much as those in self-incompatible selections except `Windsor'. In the analysis of coefficients of coancestry between self-incompatible and self-compatible sweet cherry, almost 20% of self-incompatible selections represent more than a half-sib relationship (0.125) to self-compatibles. Increasing and maintaining genetic diversity is needed in sweet cherry breeding program in North America for continued breeding progress.


Author(s):  
Michaela Benková ◽  
Iveta Čičová ◽  
Daniela Benedikova ◽  
Lubomir Mendel ◽  
Miroslav Glasa

Abstract The work is focused on the evaluation of variability of morphological and pomological characteristics of several old sweet cherries (Prunus avium L.) that were found in different Slovak regions. The experimental work has been performed during two years, 2014 and 2015. The following characteristics according to the descriptor list of subgenus Cerasus were evaluated - period of flowering and ripening, morphological characteristics of the flowers, fruit size, fruit weight, and quality parameters. The results showed high variability of evaluated accessions. From the 13 surveyed localities, the most valuable accessions were found in the locality Hornį Streda - places Čachtice, Krakovany, Nitra, and Brdárka. During the collecting expeditions, 170 accessions of sweet cherry, with fruit of the different quality were found. The most interesting accessions were grafted onto rootstocks with different intensity of growth (Prunus avium L., Prunus mahaleb L., and ‘Gisela5’). Some of the selected cherry accessions can be used for commercial growing after tests, while some of them can be used only for collection of genetic resources and as potential genitors in breeding programmes.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 534 ◽  
Author(s):  
Dominika Średnicka-Tober ◽  
Alicja Ponder ◽  
Ewelina Hallmann ◽  
Agnieszka Głowacka ◽  
Elżbieta Rozpara

The aim of this study was to evaluate and compare the content of a number of bioactive compounds and antioxidant activity of fruits of selected local and commercial sweet cherry (Prunus avium L.) cultivars. The experiment showed that the selected cultivars of sweet cherries differ significantly in the content of polyphenolic compounds and carotenoids. The fruits of commercial sweet cherry cultivars were, on average, richer in polyphenols (the sum of phenolic compounds determined chromatographically), flavonoids, as well as anthocyanins and were characterized by higher antioxidant activity when compared to the local, traditional cultivars. In the group of the traditional sweet cherry cultivars, particular attention could be paid to Black Late cv., showing the highest antioxidant activity of fruits. In the group of commercial sweet cherry cultivars, Cordia and Sylvia fruits could be recognized as being rich in bioactive compounds with high antioxidant activity. Yellow skin cultivars were characterized by the highest concentrations of carotenoids. Strong positive correlations between the identified bioactive compounds and antioxidant activity of fruits were also found. Although different cultivars of sweet cherries show a high variability in phenolics and carotenoids profiles as well as in the antioxidant activity of fruits, they all should be, similarly to other types of cherries, recognized as a rich source of bioactive compounds with an antioxidant potential.


Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 57 ◽  
Author(s):  
Kadriye Çağlayan ◽  
Vahid Roumi ◽  
Mona Gazel ◽  
Eminur Elçi ◽  
Mehtap Acioğlu ◽  
...  

High throughput sequencing of total RNA isolated from symptomatic leaves of a sweet cherry tree (Prunus avium cv. 0900 Ziraat) from Turkey identified a new member of the genus Robigovirus designated cherry virus Turkey (CVTR). The presence of the virus was confirmed by electron microscopy and overlapping RT-PCR for sequencing its whole-genome. The virus has a ssRNA genome of 8464 nucleotides which encodes five open reading frames (ORFs) and comprises two non-coding regions, 5′ UTR and 3′ UTR of 97 and 296 nt, respectively. Compared to the five most closely related robigoviruses, RdRp, TGB1, TGB2, TGB3 and CP share amino acid identities ranging from 43–53%, 44–60%, 39–43%, 38–44% and 45–50%, respectively. Unlike the four cherry robigoviruses, CVTR lacks ORFs 2a and 5a. Its genome organization is therefore more similar to African oil palm ringspot virus (AOPRV). Using specific primers, the presence of CVTR was confirmed in 15 sweet cherries and two sour cherries out of 156 tested samples collected from three regions in Turkey. Among them, five samples were showing slight chlorotic symptoms on the leaves. It seems that CVTR infects cherry trees with or without eliciting obvious symptoms, but these data should be confirmed by bioassays in woody and possible herbaceous hosts in future studies.


2006 ◽  
Vol 86 (4) ◽  
pp. 1197-1202 ◽  
Author(s):  
Frank Kappel ◽  
Peter Toivonen ◽  
Sabina Stan ◽  
Darrell-Lee McKenzie

A recently developed technique was used to determine the susceptibility to fruit surface pitting of new sweet cherry (Prunus avium L.) cultivars and compare them to an industry standard. The cultivars tested included Bing (industry standard), Cristalina, Lapins, Sandra Rose, Santina, Skeena, Sonata, Staccato, and Sweetheart. Fruit were harvested at commercial maturity, injured, held at 1°C for 2 wk and then rated for fruit surface pitting. The cultivars Lapins, Skeena, Staccato, and Sweetheart had less pitting than Bing. Cristalina and Sonata tended to have similar levels of injury to Bing and Sandra Rose and Santina tended to have more severe pitting than Bing. Key words: Sweet cherries, cultivars, simulated pitting injury


2012 ◽  
Vol 142 ◽  
pp. 136-142 ◽  
Author(s):  
V. Stanys ◽  
D. Baniulis ◽  
S. Morkunaite-Haimi ◽  
J.B. Siksnianiene ◽  
B. Frercks ◽  
...  

2000 ◽  
Vol 125 (3) ◽  
pp. 282-287 ◽  
Author(s):  
Satoru Kondo ◽  
Akihiro Tomiyama ◽  
Hideharu Seto

Trans-jasmonic acid (JA), cis-JA, and trans-methyl jasmonate (MeJA) were quantified in pulp and seeds of `Tsugaru' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] and `Satohnishiki' sweet cherry (Prunus avium L.). Trans-JA and cis-JA showed similar changes during development in both types of fruit. JA concentration was high in the early growth stages of apple pulp development, decreased with days after full bloom (DAFB), and then increased again during maturation. There was an initial decrease in concentration of MeJA in apple pulp, followed by a general increase towards harvest. Concentrations of JA and MeJA in the pulp of sweet cherry were high during early growth stages, then decreased towards harvest. PDJ treatment at 104 DAFB (preclimacteric stage) increased endogenous abscisic acid concentration and anthocyanin concentration at 122 and 131 DAFB (maturation stages) in apple. JA concentration in apple seeds was also high in the early growth stages, then decreased, and finally peaked at harvest. MeJA concentration in apple seeds increased towards harvest. In the seeds of sweet cherry, JA and MeJA concentrations generally increased until harvest. In both types of fruit, concentrations of JA and MeJA in the seeds were higher than those of pulp. On a dry weight basis, changes in concentration in the seeds preceded those in the pulp. These results demonstrate that relatively high amounts of JA and MeJA are associated with young developing fruit. These substances may have a role in regulation of fruit growth at early growth stages, though this has not been demonstrated. Chemical name used: n-propyl dihydrojasmonate (PDJ).


Genetika ◽  
2012 ◽  
Vol 44 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Evica Mratinic ◽  
Milica Fotiric-Aksic ◽  
Radmila Jovkovic

Ten wild growing sweet cherry (Prunus avium L.) genotypes from South-East Serbia with different fruit skin color were analyzed for its phenological, morphological and chemical traits. Agronomic evaluation of germplasm accessions revealed considerable diversity among different accessions for all the characters studied. The analysis of variance revealed significant differences among all genotypes for almost all examined properties. Cluster analysis showed adequate grouping of wild sweet cherry genotypes according to pomological characterization and distinguished them into two distinct groups. The first group had two subgroups and consisted of seven genotypes, while the second one included only three accessions. Despite of the significant differences among genotypes, the total concentration of phenols made a clear separation between the clusters. The level of genetic diversity in these wild sweet cherry genotypes is very high and therefore these trees are useful sources of variability for attributes studied and can be employed in further breeding programs or conservation.


2000 ◽  
Vol 10 (4) ◽  
pp. 719-725 ◽  
Author(s):  
Gregory A. Lang

Sweet cherries (Prunus avium L.) can be one of the most profitable tree fruits cultivated in temperate climates. While cherry trees grow naturally to relatively tall heights (≈35 ft [≥10 m]), new size-controlling cherry rootstocks similar to those used in high-density apple (Malus domestica Borkh.) orchards are now a reality. The Gisela (GI.) and Weiroot (W.) series from Germany, the Gran Manier (GM.) series from Belgium, the P-HL series from Czech Republic, `Tabel Edabriz' from France, and others of international origin are at various stages of scientific and field testing in North America, with some now being used for commercial fruit production. These stocks confer several advantageous traits besides vigor control, including precocious fruiting and high productivity. While these beneficial traits are exciting, serious problems also have been documented on occasion, such as small fruit size and tree decline. As many of these rootstocks are interspecific Prunus L. hybrids, might there be significant limitations for fruit quality and orchard longevity? What is known about their tolerance to various soil types and/or climatological stresses? What is known about their susceptibilities to pathogens and pests? Further, with the U.S. and worldwide orchard area planted to fresh-market sweet cherries already expanding to record levels throughout the 1990s and a time-honored agricultural tendency toward overproduction until grower profits are minimized (e.g., recent international apple markets), what might be the future impact of such precocious, productive rootstocks on sweet cherry profitability and sustainable production? This overview addresses these topics, providing some answers and some areas for future scientific investigation and industry discussion.


2018 ◽  
Vol 143 (4) ◽  
pp. 282-288 ◽  
Author(s):  
Paul A. Wiersma ◽  
Deniz Erogul ◽  
Shawkat Ali

Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were evaluated in an effort to reliably DNA fingerprint sweet cherry (Prunus avium L.) cultivars and advanced selections from the breeding program at the Summerland Research and Development Center (Summerland, BC, Canada). SSR markers were found that differentiated the 35 cultivars and selections tested. However, groups of cultivars closely related to the parental cultivars, Lapins and Sweetheart, were differentiated by only a few SSR markers each. These last few markers were discovered by specifically screening within these small groups of cultivars and the resulting markers had lower discriminating power (Dj) statistics within the full set of 35 cultivars and selections. To further characterize the differences in one of these closely related groups, SNP markers were identified in the cultivar Sweetheart and an analysis was made of how these markers segregated into three of its open-pollinated progeny. Large blocks of the ‘Sweetheart’ genome (34%) did not contain informative SNP markers, which was consistent with its ancestry where the cultivar Van is both a parent and grandparent. The three progeny cultivars differed from ‘Sweetheart’ at 14%, 31%, and 29% of the 3011 SNP positions tested. These were located in blocks of linked haplotypes covering from 2.5 to 20 million bps each and were distinct for the three cultivars. The cultivar Staccato®, which required the most effort for SSR marker discrimination, also had the lowest number of SNP position differences from ‘Sweetheart’ (14%). These informative SNP markers were located in only five small regions of the sweet cherry genome, which also contained the discriminating SSR markers and provides an explanation for the difficulty of locating SSR markers for this cultivar. In addition to clearly differentiating these cultivars, this SNP analysis shows the level of variation expected within this closely related group.


Sign in / Sign up

Export Citation Format

Share Document