scholarly journals Effects of operating parameters on efficiency of lead removal by complexation-microfiltration process

2012 ◽  
Vol 66 (4) ◽  
pp. 461-467 ◽  
Author(s):  
Katarina Trivunac ◽  
Slavica Stevanovic

Majority of lead content found in the environment is the result of human activities. Heavy metals can be hazardous because they tend to bioaccumulate. Complexation-microfiltration process for the removal of Pb(II) ions was studied. The aim of microfiltration of the model wastewater containing heavy metal ions was finding an optimum ratio between the concentrations of the complexing agent and metal, and determining the most favorable pH value. The microfiltration experiments were carried out in a stirred dead-end cell. Diethylaminoethyl cellulose (DEAE 23) was selected as the complexing agent. Versapor membranes were used to separate formed polymer-metal complex. The concentration of heavy metal ions after microfiltration in aqueous solution was determined using the atomic absorption spectroscopy (AAS). Effects on the amount of complexing agent, concentration of metal ion, pH value and operating pressure on the flux, J, and rejection coefficient, R, were investigated. Experimental results indicate that the pH of the solution has considerable influence on the rejection coefficient. An increase in pH and the amount of complexing agents enabled us to obtain very high retention coefficient (99%).

2012 ◽  
Vol 77 (11) ◽  
pp. 1661-1670 ◽  
Author(s):  
Katarina Trivunac ◽  
Zoran Sekulic ◽  
Slavica Stevanovic

As a result of its wide industrial applications, zinc has become an important contaminant in aquatic environment since it is a toxic heavy metal and some of its compounds such as zinc arsenate and zinc cyanide, may be extremely hazardous. Therefore, there is a growing need for developing simple methods capable of separating and recovering trace zinc from environmental waters. Nowadays, the ultra and microfiltration method for trace metals removal from waters by the addition of water-soluble polymers into the aqueous solutions has become a significant research area. The choice of watersoluble macroligands remains important for developing this technology. Sodium carboxymethyl cellulose (Na-CMC) was selected as complexing agent. The microfiltration experiments were carried out in stirred dead-end cell. To separate formed polymer-metal complex Versapor membranes were used. The concentration of heavy metal ions after microfiltration in aqueous solution was determined using atomic absorption spectroscopy (AAS). Effects of amount of complexing agent, pH value, type of anion, ionic strength and operating pressure on the flux (J) and rejection coefficient (R) were investigated. Experimental results indicate a considerable influence of the pH, ionic strength and type of anion on the rejection coefficient, while effect of amount of complexing agent is relatively insignificant. The Na-CMC used in the research proved to be very effective, which may be supported by the high rejection coefficients obtained (99%).


2013 ◽  
Vol 221 ◽  
pp. 512-521 ◽  
Author(s):  
Maciej Kowalczyk ◽  
Zbigniew Hubicki ◽  
Dorota Kołodyńska

2013 ◽  
Vol 773 ◽  
pp. 283-288
Author(s):  
Xing Zou ◽  
Xiang Quan Chen ◽  
Hai Chao Xie ◽  
Xiao Dan Qiu

The manganese sulfate solution leached from low-grade pyrolusite with pyrite and H2SO4 contains heavy metal ions of high concentration, influencing the quality of the final products of manganese compounds and causing manganese ions not to be electrolyzed. The present study was focused on the separation of Co, Ni and Zn ions from the leached solution with BaS. By controlling the pH value at 5.0-6.5, temperature at 50-60°C, reaction time at 15 min and mixing velocity at 78 rpm, the heavy metal ions could be separated effectively. Under the above optimized conditions, the ion concentration of Co, Ni, and Zn in the solution was reduced to 0.06 mg.L-1, 0.27mg.L-1 and 0.01mg.L-1, and the separation efficiency was 99.72%, 99.18% and 99.9% respectively. The obtained pure solution meets the demands of manganese electrowinning.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 241 ◽  
Author(s):  
Jian Guo ◽  
Yaqin Song ◽  
Xiaoyang Ji ◽  
Lili Ji ◽  
Lu Cai ◽  
...  

The aim of this study was to optimize the adsorption performance of activated carbon (AC), derived from the shell of Penaeus vannamei prawns, on heavy metal ions. Inexpensive, non-toxic, and renewable prawn shells were subjected to carbonization and, subsequently, KOH-activation to produce nanoporous K-Ac. Carbonized prawn shells (CPS) and nanoporous KOH-activated carbon (K-Ac) from prawn shells were prepared and characterized by FTIR, XRD, BET, SEM, and TEM. The results showed that as-produced K-Ac samples were a porous material with microporous and mesoporous structures and had a high specific surface area of 3160 m2/g, average pore size of about 10 nm, and large pore volume of 2.38 m3/g. Furthermore, batches of K-Ac samples were employed for testing the adsorption behavior of Cd2+ in solution. The effects of pH value, initial concentration, and adsorption time on Cd2+ were systematically investigated. Kinetics and isotherm model analysis of the adsorption of Cd2+ on K-Ac showed that experimental data were not only consistent with the Langmuir adsorption isotherm, but also well-described by the quasi-first-order model. Finally, the adsorption behaviors of as-prepared K-Ac were also tested in a ternary mixture of heavy metal ions Cu2+, Cr6+, and Cd2+, and the total adsorption amount of 560 mg/g was obtained.


Author(s):  

Water factor plays an important role in formation of healthy environment for human beings. Due to unfavorable anthropogenic impact upon environment certain surface and groundwater water supply sources are contaminated with heavy metal compounds. Clints (siliceous rocks) are considered the most promising materials for the natural and waste waters treatment from such ingredients. The paper presents the results of the siliceous rocks’ physical/chemical and operational properties studying. It has been shown that these siliceous rocks satisfy all requirements to filtering materials. Methods of physical/chemical analysis were applied for studying the adsorption processes nature. It was for the first time stated (with methods of potentiometric titration and infra-red spectroscopy) that siliceous rocks included the fixed functional ion-exchange groups in their composition and were subacid cationits. Beside chemical adsorption heavy metal ions interact with siliceous rocks due to the action of their physical nature forces. Physical adsorption contributes the most in the heavy metal compounds up-taking by filtering materials, this is supported by the fact of low values of the process activation energy: from 3 to 8 kJ/gram-molecule. Parameters of the process of heavy metal ions adsorption with siliceous rocks in static and dynamic conditions have been calculated in accordance with the experimental results. Influence of salt content and the liquid phase pH value on the adsorption process has been stated. Optimal conditions for the worked siliceous rocks regeneration have been determined. New data on heavy metals cations adsorption with nuclear filtering materials confirm principal possibility of their use for natural and waste waters treatment.


2020 ◽  
Vol 20 (12) ◽  
pp. 7231-7254 ◽  
Author(s):  
Yuzhe Zhang ◽  
Bin Wang ◽  
Qian Cheng ◽  
Xinling Li ◽  
Zhongyu Li

How to remove harmful heavy metal ions from waste batteries or lithium cells efficiently has been the focus of scholars. More and more metal oxides had been used to deal with the pollution of heavy metal caused by waste batteries in recent years. Nanostructured metal oxides have great potential because of their large comparative areas. The adsorption for these heavy metal ions can be further improved by using modified metal oxides as adsorbents. At present, iron oxide is widely used in this field. Other metal oxides have also been studied in removing these heavy metal ions. Compared to other metal oxides, the adsorbents made of iron oxide are easy to be separated from the reaction system. pH value in the solution can affect the activity of adsorption sites on metal oxides adsorbents and change the distribution of ions in solution. As a result, pH value can significantly influence the adsorption of metal oxides adsorbents for heavy metal ions from waste batteries or lithium cells.


Sign in / Sign up

Export Citation Format

Share Document