scholarly journals Characterization of a coating 316L applied by plasma transferred arc

2018 ◽  
Vol 72 (3) ◽  
pp. 139-147 ◽  
Author(s):  
Aleksandar Maslarevic ◽  
Gordana Bakic ◽  
Milos Djukic ◽  
Bratislav Rajicic ◽  
Vesna Maksimovic

Parts of industrial machines and structures are often exposed to the action of aggressive environments, which in a short period of time can provoke the loss of their integrity. It is well known that for extending the service life against erosion and corrosion, protection of the exposed structure zone by coating is frequently used. Various application methods of protective coatings are applied, and the most common are welding and thermal spraying processes. The aim of this study was characterization of coatings made of stainless steel 316L, widely used in chemical and petrochemical industries. The coating was applied on a structural steel S235JR by plasma transferred arc using powder as a filler material. Due to a number of advantages, the plasma transferred arc (PTA) surfacing process has found significant usages in the field of surface protection. This paper presents results of hardness measurements in characteristic zones of the coating and the base material, as well as microstructural characterization of coatings using optical and scanning electron microscopy. Results of EDS analysis of the coating and hardness measurements indicated that a relatively high dilution (26.1 %) of the base material (BM) and the filler material (FM) occurred in a very narrow zone above the fusion line, and thus did not significantly affect the chemical composition of the rest of the coating. Also, erosion resistance tests of coatings were performed by changing the basic functional parameters that is the impact angle and the speed of erodent particles. It was observed that the erosion resistance of the coating material decreases approximately linearly with the increase of the particle speed. Also, with the increase of the impact angle of the erodent (up to 45 ?), the mass loss of the coating material is increased.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Janette Brezinová ◽  
Ján Viňáš ◽  
Anna Guzanová ◽  
Jozef Živčák ◽  
Jakub Brezina ◽  
...  

The paper presents research results on the quality of hardfacing layers made during the renovation of unheated mold surfaces designed for injection of aluminum alloys using the plasma transferred arc (PTA) technology. As mold material, the medium alloy steel X38CrMoV5-1 (H11) was used. For the formation of functional layers, three types of additives in the form of powder were applied: two types on an iron basis with the designation HSS 23 and HSS 30 and one type on a nickel basis with the designation DEW Nibasit 625-P. The hardfacing layers were made on a 120 × 350 × 50 mm plate in two layers on the plasma hardfacing machine PPC 250 R6. The quality of the layers was evaluated by means of nondestructive and destructive tests. The surface integrity of the layers was assessed using visual and capillary tests. The samples passed these tests. The impact of the parameters used and the mixing of the hardfacing metal with base material, as well as the structure analysis, were assessed by means of light and electron microscopy (SEM). The chemical composition of the elements was determined by energy-dispersive X-ray spectroscopy (EDX) analysis using a SEM microscope. The hardness of the individual layers was evaluated. Since, during operation, molds are subjected to significant wear due to friction, the friction coefficients for selected temperatures were determined by the equipment for the evaluation of tribology properties. Based on the experiments conducted, all three types of additives can be used for renovation. However, from a tribology perspective, the additive DEW Nibasit 625-P on a nickel alloy basis is recommended for renovation.


2012 ◽  
Vol 54 (11-12) ◽  
pp. 793-799 ◽  
Author(s):  
Serkan Islak ◽  
Özkan Eski ◽  
Soner Buytoz ◽  
Muzaffer Karagöz ◽  
Joseph Stokes

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
S. Shasthri ◽  
V. Kausalyah ◽  
Qasim H. Shah ◽  
Kassim A. Abdullah ◽  
Moumen M. Idres ◽  
...  

The effects of bullet vehicle crash impact angle, child restraint system design, and restraint harness slack at side impact speed of 32.2 km/h (20 mph) on moments sustained at the neck by a three-year-old child are investigated. Mathematical models are built using the response surface method based on simulation results whereby good fitness is achieved. The singular and cross interactive effect of each predictor on the neck moment are analyzed. The number of significant parameters affecting the neck moment is shown to be the largest for wide impact angles (ϕ≥60°) and the impact angle parameter is largely revealed to be the most sensitive. An ideal safe range for low neck moment has been established to be within ϕ angles 45° and 65°. It is further shown that the nature of all parameters effect on the neck moment is highly dependent on the impact angle range.


2019 ◽  
Vol 19 (2) ◽  
pp. 28-53 ◽  
Author(s):  
M. H. Buszko ◽  
A. K. Krella

AbstractThe degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.


2018 ◽  
Vol 614 ◽  
pp. A73 ◽  
Author(s):  
T. Felipe ◽  
H. Socas-Navarro ◽  
D. Przybylski

Context. The use of instruments that record narrowband images at selected wavelengths is a common approach in solar observations. They allow scanning of a spectral line by sampling the Stokes profiles with two-dimensional images at each line position, but require a compromise between spectral resolution and temporal cadence. The interpretation and inversion of spectropolarimetric data generally neglect changes in the solar atmosphere during the scanning of line profiles. Aims. We evaluate the impact of the time-dependent acquisition of various wavelengths on the inversion of spectropolarimetric profiles from chromospheric lines during umbral flashes. Methods. Numerical simulations of nonlinear wave propagation in a sunspot model were performed with the code MANCHA. Synthetic Stokes parameters in the Ca II 8542 Å line in NLTE were computed for an umbral flash event using the code NICOLE. Artificial profiles with the same wavelength coverage and temporal cadence from reported observations were constructed and inverted. The inferred atmospheric stratifications were compared with the original simulated models. Results. The inferred atmospheres provide a reasonable characterization of the thermodynamic properties of the atmosphere during most of the phases of the umbral flash. The Stokes profiles present apparent wavelength shifts and other spurious deformations at the early stages of the flash, when the shock wave reaches the formation height of the Ca II 8542 Å line. These features are misinterpreted by the inversion code, which can return unrealistic atmospheric models from a good fit of the Stokes profiles. The misguided results include flashed atmospheres with strong downflows, even though the simulation exhibits upflows during the umbral flash, and large variations in the magnetic field strength. Conclusions. Our analyses validate the inversion of Stokes profiles acquired by sequentially scanning certain selected wavelengths of a line profile, even in the case of rapidly changing chromospheric events such as umbral flashes. However, the inversion results are unreliable during a short period at the development phase of the flash.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

The paper reports the influence of carburizing on the slurry erosion behavior of AISI 5117 steel using a whirling-arm rig. The microstructure and hardness profile of the surface layer of carburized steel were investigated. For characterizing the slurry damage process and for better understanding of material removal at different angles, scanning electron microscope (SEM) images at different locations on eroded surface using stepwise erosion combined with relocation SEM were presented. The study is also focused on studying the erosion wear resistance properties of AISI 5117 steel after carburizing at different impact angles. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand has a nominal size range of 250 – 355 μm was used as an erodent. The results showed that, carburizing process of steel increased the erosion resistance and hardness compared with untreated material for all impact angles. The erosion resistance of AISI 5117 steel increases by 75%, 61%, 33%, 10% at an impact angle of 30 deg, 45 deg, 60 deg, and 90 deg, respectively, as result of carburizing, i.e., the effectiveness of carburizing was the highest at low impact angles. Treated and untreated specimens behaved as ductile material, and the maximum mass loss appeared at impact angle of 45 deg. Plough grooves and cutting lips appeared for acute impact angle, but the material extrusions were for normal impact angles. The erosion traces were wider and deeper for untreated specimens comparing by the shallower and superficial ones for the carburized specimens. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Abouel-Kasem ◽  
M. A. Al-Bukhaiti ◽  
K. M. Emara ◽  
S. M. Ahmed

In the present work, the topographical images of slurry erosion surfaces at different impact angles were quantified using fractal analysis. The study showed that the variation of fractal value of slope of linearized power spectral density with the impact angle is largely similar to the relationship between the erosion rate and the impact angle. Both the fractal value and erosion rate were maximum at 45 deg and 90 deg for ductile and brittle materials, respectively. It was found also that the variation of fractal values versus the impact angle has a general trend that does not depend on magnification factor. The fractal features to the eroded surfaces along different directions showed high directionality at oblique impact angle and were symmetrical at normal impact.


Sign in / Sign up

Export Citation Format

Share Document