scholarly journals PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties

2011 ◽  
Vol 76 (8) ◽  
pp. 1153-1161 ◽  
Author(s):  
Salah Musbah ◽  
Vesna Radojevic ◽  
Nadezda Borna ◽  
Dusica Stojanovic ◽  
Miroslav Dramicanin ◽  
...  

The results of a study related to the processing and characterization of PMMA-Y2O3 (Eu3+) nanocomposites are presented herein. The nanocomposite samples were prepared using a laboratory mixing molder with different contents of Eu-ion doped Y2O3 nanophosphor powder. The influence of particle content on the optical and dynamic mechanical properties of the nanocomposites was investigated. The intensity of the luminescence emission spectra increased as the nanophosphor content in the composite increased. The results of dynamic mechanical analysis revealed that the storage modulus, loss modulus and glass transition temperature (Tg) of the polymer composites increased with increasing content of the nanophosphor powder. The microhardness data also confirmed that the hardness number increased with nanoparticles concentration in the PMMA nanocomposites. The obtained results revealed a relatively linear relationship between Tg and the Vickers hardness.

2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2019 ◽  
Vol 39 (6) ◽  
pp. 508-514
Author(s):  
Yannan He ◽  
Zhiqiang Yu

Abstract The thermal and dynamic mechanical properties of epoxy composites filled with zirconium diboride/nano-alumina (ZrB2/Al2O3) multiphase particles were investigated by means of differential scanning calorimetry, dynamic thermo-mechanical analysis, and numerical simulation. ZrB2/Al2O3 particles were surface organic functional modified by γ-glycidoxypropyltrimethoxysilane for the improvement of their dispersity in epoxy matrix. The results indicated that the curing exotherm of epoxy resin decreased significantly due to the addition of ZrB2/Al2O3 multiphase particles. In comparison to the composites filled with unmodified particles, the modified multiphase particles made the corresponding filling composites exhibit lower curing reaction heat, lower loss modulus, and higher storage modulus. Generally speaking, the composites filled with 5 wt% modified multiphase particles presented the best thermal stability and thermo-mechanical properties due to the better filler-matrix interfacial compatibility and the uniform dispersity of modified particles. Finite element analysis also suggested that the introduction of modified ZrB2/Al2O3 multiphase particles increased the stiffness of the corresponding composites.


2018 ◽  
Vol 53 (1) ◽  
pp. 65-72 ◽  
Author(s):  
MK Gupta ◽  
Rohit Singh

In the present work, a novel physical treatment (PLA coating) of sisal fibres and its influence on the water absorption, static and dynamic mechanical properties of its composites has been presented. The treated sisal fibres were used consisted of alkali treatment and PLA coating to fabricate its polyester-based composites by hand lay-up technique keeping constant fibres content as 20 wt.% . Water absorption analysis was carried out in terms of water uptake (%), and sorption, diffusion and permeability coefficient. In addition, static properties were examined in terms of tensile, flexural and impact test, and dynamic mechanical analysis was performed in terms of storage modulus [Formula: see text], loss modulus [Formula: see text], damping [Formula: see text] and glass transition temperature [Formula: see text]. It was reported that the PLA-coated sisal composites showed the best performance in water absorption, mechanical and dynamic mechanical properties than pure sisal and alkali-treated sisal composites. There were 33%, 49%, 48%, and 27% improvement in water resistance, tensile strength, flexural strength and impact strength, respectively, of PLA-coated sisal composites as compared to that of pure sisal composite.


2013 ◽  
Vol 712-715 ◽  
pp. 111-114 ◽  
Author(s):  
Tian Ming Gao ◽  
Mao Fang Huang ◽  
Rui Hong Xie ◽  
Hong Lian Chen

Surface modified nanocrystalline cellulose (NCC) was prepared by silicon-69, and then blended into natural rubber latex to prepare nanocomposites. The nanocomposites properties of tensile properties, tear strength, morphology and thermal dynamic mechanical properties were measured by mechanical property testing, scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA), respectively. The results showed that modified NCC is homogeneously distributed throughout NR matrix, which leads to the enhancement on mechanical properties. Moreover, the storage modulus (E) of modified nanocellulose filled NR is higher than unmodified nanocellulose filled NR, and the tanδ is reversed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chern Chiet Eng ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md. Zin Wan Yunus ◽  
...  

In previous studies, the effect of the addition of 1 wt% hydrophilic nanoclay on polylactic acid (PLA)/polycaprolactone (PCL)/oil palm mesocarp fiber (OPMF) biocomposites was investigated by tensile properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The current studies focus on the effect of addition of 1 wt% hydrophilic nanoclay on mechanical (flexural and impact properties) and dynamic mechanical properties of composites. The composites were characterized by the Fourier transform infrared spectroscopy (FTIR) and dynamic mechanical analysis (DMA). FTIR spectra show that peak shifting occurs when 1 wt% hydrophilic nanoclay was added to composites. The addition of 1 wt% hydrophilic nanoclay successfully improves the flexural properties and impact resistance of the biocomposites. The storage modulus of biocomposites was decreased when nanoclay was added which indicates that the stiffness of biocomposites was reduced. The loss modulus curve shows that the addition of nanoclay shift twotgin composites become closer to each other which indicates that the incorporation of nanoclay slightly compatibilizes the biocomposites. Tanδindicated that hybrid composites dissipate less energy compared to biocomposites indicate that addition of clay to biocomposites improves fiber/matrix adhesion. Water sorption test shows that the addition of nanoclay enhances water resistance of composites.


2014 ◽  
Vol 684 ◽  
pp. 111-116
Author(s):  
Yan Bin Gao ◽  
Xiong Chen ◽  
Jin Sheng Xu ◽  
Shao Qing Hu

In this paper, the static and dynamic mechanical viscoelastic behavior of NEPE propellant are studied. Under static conditions, five samples were subjected to constant-strain-rate monotonic loading with five different loading rates at room temperature. The dynamic mechanical analysis was employed for measurements of temperature and frequency dependence of the NEPE propellant by mean of BOSE-DMA-ELF3200 in frequency range from 1Hz to 16Hz. And get the dynamic mechanics temperature spectrum In the low temperature region, a single relaxation is observed in loss modulus-temperature Curves, which is glass transition relaxation. The results showed that NEPE propellant showed rate dependence and the same mechanical properties in the lower temperature and higher frequency.


Author(s):  
SS Rana ◽  
MK Gupta

The present study aims to fabricate the epoxy-based bionanocomposites reinforced with hemp nanocellulose and the evaluation of their mechanical, thermal and dynamic mechanical properties. Nanocellulose from hemp fibres was isolated via the chemo-mechanical method and its bionanocomposites were prepared using the in situ polymerization method. Although many researchers have reported studies on the preparation and characterization of bionanocomposites however, studies on the mechanical, thermal, and dynamic mechanical properties of epoxy-based bionanocomposites reinforced with hemp nanocellulose are still unreported. The mechanical properties (i.e. tensile, flexural, hardness, and impact) and dynamic mechanical properties (i.e. glass transition temperature, damping behaviour, storage, and loss modulus) of the developed bionanocomposites were investigated. Further, the crystalline behaviour and thermal stability were also studied using the X-ray diffraction and thermogravimetric analysis techniques, respectively. The results revealed that an addition of nanocellulose considerably improved the mechanical, thermal, and viscoelastic properties of the bionanocomposites. As much as 52.17%, 48.17%, 89.08%, and 15.67% improvements in the tensile strength, flexural strength, impact strength, and hardness, respectively, for the 2 wt.% nanocellulose composites were found over the epoxy matrix.


2013 ◽  
Vol 838-841 ◽  
pp. 2227-2230
Author(s):  
Chun Gui Du ◽  
Ren Li ◽  
Zhe Wang ◽  
Hong Wei Yu ◽  
Chun De Jin

The dynamic mechanical properties of radial and chordwise bamboo pieces were tested by dynamic mechanical analysis (DMA). The results show that the storage modulus and loss modulus and tangent delta of chordwise direction were all larger than the radial direction of bamboo; the peak of glass transition temperature of chordwise direction is high than the radial direction, and their sizes are very close; dynamic mechanical analysis can provide a reference for the optimization applicable environment temperature of curtain plybamboo.


Sign in / Sign up

Export Citation Format

Share Document