scholarly journals The sorption of inorganic arsenic on modified sepiolite: Effect of hydrated iron(III)-oxide

2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.

Author(s):  
Ayben Polat ◽  
Sukru Aslan

The sorption of Cu2+ ions from aqueous solutions by eggshell was investigated in a batch experimental system with respect to the temperature, initial Cu2+ concentrations, pH, and biosorbent doses. The adsorption equilibrium was well described by the Langmuir isotherm model with the maximum adsorption capacity of 5.05 mg Cu2+/g eggshell at 25 °C. The value of qe increased with increasing the temperature while also increases the release of Ca2+ and HCO−3 ions from the eggshell. The highest sorption of Cu onto the waste eggshell was determined at the initial pH value of 4.0. The results confirming that the adsorption reaction of Cu2+ on the eggshell was thought to be endothermic. A comparison of the kinetic models such as pseudo first and second-order kinetics, intraparticle diffusion, and Elovich on the sorption rate demonstrated that the system was best described by the pseudo second-order kinetic model.


2013 ◽  
Vol 368-370 ◽  
pp. 687-691 ◽  
Author(s):  
Wei Lan Lin ◽  
Jin Chuan Gu ◽  
Wen Yuan Wang ◽  
Yu Heng Wang

This is a study about using cerium ions solution to modify lithium silica fume and the phosphorus adsorption by the modified material. The way to modify lithium silica fume and adsorption conditions has been researched. It was found that capacity of adsorption have been improved after modification by the cerium nitrate. In the adsorption test, we studied the effects of the concentration of cerium ions, the calcination temperature, the dosage, initial pH value, reaction temperature and other factors on the adsorption. The results indicated that after modifications by 3% cerium ions , calcinations at 573k, the adsorption of phosphorus can get more than 90% when modified lithium silica fume dosage is 9.6g.l-1 and the concentration of phosphorus solution is 4 mg.l-1. In addition, the Freundlich adsorption isotherm is fit for the description of the phosphorus adsorption. The phosphorus adsorption process was in accord with pseudo-second-order kinetic model.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


2020 ◽  
Vol 81 (6) ◽  
pp. 1114-1129 ◽  
Author(s):  
Jun Wang ◽  
Qinglong Xie ◽  
Ao Li ◽  
Xuejun Liu ◽  
Fengwen Yu ◽  
...  

Abstract In this study, an efficient route to synthesizing polyethyleneimine-modified ultrasonic-assisted acid hydrochar (PEI-USAH) is developed and reported. Ultrasonic irradiation technique was used as surface modification method to shorten the crosslinking reaction for hydrochar and polyethyleneimine (PEI). The PEI-USAH showed an excellent adsorption capacity for Cr(VI) from aqueous solution. The physicochemical properties of this PEI-modified adsorbent were comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analysis and CNHS analysis. The effects of contact time, initial pH, and biosorbent dose on adsorption capacities were investigated. The batch adsorption experiments showed that PEI-USAH possessed the maximum adsorption capacities of 94.38 mg/g and 330.84 mg/g for initial Cr(VI) concentration of 100 mg/L and 500 mg/L, respectively. Furthermore, this adsorption process could be fitted to Langmuir adsorption and described by the pseudo second order kinetic model. Based on the above findings, PEI-USAH could be used as a potential adsorbent for removal of Cr(VI) from wastewater.


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2014 ◽  
Vol 79 (4) ◽  
pp. 495-508 ◽  
Author(s):  
Anikó Kőnig-Péter ◽  
Béla Kocsis ◽  
Ferenc Kilár ◽  
Tímea Pernyeszi

Biosorption of Cd(II) and Pb(II) ions from aqueous solution using lyophilized Pseudomonas aeruginosa (PAOI) cells were observed under various experimental conditions. The effect of pH, initial metal concentration, equilibration time and temperature on bioadsorption was investigated. The optimum pH value for Pb(II) adsorption was found to be 5.0, and for Cd(II) 5.0 ? 6.0. The Pb(II) and Cd(II) bioadsorption equilibrium were analyzed by using Freundlich and Langmuir model using nonlinear least-squares estimation. The experimental maximum uptake capacity of Pb(II) and Cd(II) was estimated to be 164 mg g-1 and 113 mg g-1, respectively. For biosorption kinetic study the pseudo second-order kinetic model was applied at various temperatures. The temperature had no significant effect on Pb(II) bioadsorption. In case of Cd(II) bioadsorption the adsorbed amount decreased with increasing temperature.


2017 ◽  
Vol 75 (10) ◽  
pp. 2316-2321 ◽  
Author(s):  
Hao Peng ◽  
Zuohua Liu ◽  
Changyuan Tao

Melamine, possessing three free amino groups and three aromatic nitrogen atoms in its molecule, has great potential as an adsorbent for metal ions. We investigated three impact factors of the adsorption process: the initial pH of the vanadium solution, contact time and reaction temperature. The adsorption kinetics could be accurately described by the pseudo-second-order kinetic model. Langmuir and Freundlich models fitted well with the experimental equilibrium data, and the maximal adsorption capacity was found to be 1,428.57 mg vanadium/g melamine, and the Freundlich model showed the adsorption is privilege type.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nacer Ferrah ◽  
Omar Abderrahim ◽  
Mohamed Amine Didi ◽  
Didier Villemin

A new chelating polymeric sorbent has been developed using polystyrene resin grafted with phosphonic acid. After characterization by FTIR and elementary analysis, the new resin has been investigated in liquid-solid extraction of cadmium(II). The results indicated that phosphonic resin could adsorb Cd(II) ion effectively from aqueous solution. The adsorption was strongly dependent on the pH of the medium and the optimum pH value level for better sorption was between 3.2 and 5.2. The influence of other analytical parameters including contact time, amount of resin, metal ion concentration, and the presence of some electrolytes was investigated. The maximum uptake capacity of Cd(II) ions was 37,9 mg·g−1grafted resin at ambient temperature, at an initial pH value of 5.0. The overall adsorption process was best described by pseudo second-order kinetic. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. Furthermore, more than 92% of Cd(II) could be eluted by using 1.0 mol·L−1HCl in one cycle.


2021 ◽  
Vol 21 (1) ◽  
pp. 623-631
Author(s):  
Yueling Zhao ◽  
Haibo Liu ◽  
Tianhu Chen ◽  
Dong Chen ◽  
Chen Chen ◽  
...  

Natural siderite was selected as a raw material for preparing nano zero-valent iron (nZVI). The efficiency of the as-synthesized nZVI for PO3−4–P removal was investigated, and the effects of the annealing temperature, pH, initial PO3−4–P concentration, adsorption temperature and oxygen were investigated. The results indicated that after annealing at 550 °C, nZVI exhibited an average crystal size of 56.3 nm and a surface area of 14.1 m2/g. A decrease in pH and an increase in oxygen availability enhanced the removal efficiency. The adsorption process, which was spontaneous and exothermic according to the thermodynamic analysis, agreed well with the pseudo-second-order kinetic model. Based on the Langmuir equilibrium isotherms, the capacity of nZVI to adsorb phosphorus was determined to be 33.18 mg/L. The optimized conditions for the experimental conditions were defined by an orthogonal experiment as follows: initial P concentration 2 mg/L, initial pH 4, iron dose 2 g/L, adsorption time 60 min. The experimental results suggested that the as-prepared nZVI was a promising adsorbent for the removal of phosphate.


Sign in / Sign up

Export Citation Format

Share Document