scholarly journals Ultrafast synthesis of isoquercitrin by enzymatic hydrolysis of rutin in a continuous-flow microreactor

2015 ◽  
Vol 80 (7) ◽  
pp. 853-866 ◽  
Author(s):  
Jun Wang ◽  
Gong An ◽  
Shuangshuang Gu ◽  
Hongsheng Cui ◽  
Xiangyang Wu

Isoquercitrin is a rare flavonol glycoside with a wide range of biological activities and is a key synthetic intermediate for the production of enzymatically modified isoquercitrin. In order to establish an ultrafast bioprocess for obtaining isoquercitrin, a novel continuous flow biosynthesis of isoquercitrin using the hesperidinase-catalyzed hydrolysis of rutin in a glass-polydimethylsiloxane (PDMS) microreactor was first carried out. Using the developed microchannel reactor (200?m width, 50?m depth, and 2 m length) with one T-shaped inlet and one outlet, the maximum yield of isoquercitrin (98.6%) was achieved in a short time (40 min) under the following optimum conditions: rutin concentration at 1 g L-1, hesperidinase concentration at 0.1 g mL-1, reaction temperature at 40?C, and a flow rate at 2 ?L min-1. The activation energy value Ea of the enzymatic reaction was 4.61 kJ mol-1, and the reaction rate and volumetric productivity were approximately 16.1-fold and 30% higher, respectively, than those in the batch reactor. Thus, the use of a continuous-flow microreactor for the enzymatic hydrolysis of rutin is an efficient and simple approach to achieve a relative high yield of isoquercitrin.

2016 ◽  
Vol 46 (6) ◽  
pp. 778-790 ◽  
Author(s):  
Ghassan Abo Chameh ◽  
Fadi Kheder ◽  
Francois Karabet

Purpose The purpose of this paper was to find out the appropriate enzymatic hydrolysis conditions of alkali pretreated olive pomace (OP) which enable maximum yield of reducing sugar. Design/methodology/approach The commercial enzymatic preparation (Viscozyme® L) was used for the hydrolysis of OP. The effects of pretreatment, time, temperature, pH, enzyme quantity and substrate loading on the hydrolysis yield were investigated. Findings This study showed that enzymatic hydrolysis of OP using Viscozyme® L can be successfully performed at 50°C. Alkaline pretreatment step of OP prior the enzymatic hydrolysis was indispensable. The hydrolysis yield of alkaline pretreated OP was 2.6 times higher than the hydrolysis yield of untreated OP. Highest hydrolysis yield (33.5 ± 1.5 per cent) was achieved after 24 h using 1 per cent (w/v) OP load in the presence of 100 μl Viscozyme® L at 50°C and pH 5.5 with mixing rate of 100 rpm (p = 0.05). Originality/value Reaction time, temperature, pH value and enzyme quantity were found to have a significant effect on enzymatic hydrolysis yield of alkali pretreated of OP. Although high-solid loadings of OP lowered the hydrolysis yield, it produced higher concentration of reducing sugars, which may render the OP conversion process more economically feasible.


2012 ◽  
pp. 33-41 ◽  
Author(s):  
Zorica Knezevic-Jugovic ◽  
Andrea Stefanovic ◽  
Milena Zuza ◽  
Stoja Milovanovic ◽  
Sonja Jakovetic ◽  
...  

The objectives of this study were to examine the effect of sonication and high-pressure carbon dioxide processing on proteolytic hydrolysis of egg white proteins and antioxidant activity of the obtained hydrolysates. It appeared that the ultrasound pretreatment resulted in an increase in the degree of hydrolysis of the enzymatic reaction while the high-pressure carbon dioxide processing showed an inhibition effect on the enzymatic hydrolysis of egg white proteins to some extent. The antioxidant activity of the obtained hydrolysates was improved by ultrasound pretreatment of egg white proteins at the pH 8.3. Thus, the combination of ultrasound pretreatment at the pH 8.3 and subsequent enzymatic hydrolysis with alcalase at 50?C and pH 8.0 could offer a new approach to the improvement of the functional properties of egg white proteins and their biological activity.


Author(s):  
Onoh Ikechukwu Maxwell ◽  
Anho Lawrence Oghenerivwe ◽  
Egwuagu Onyekachi

The aim of this work is to study the acid and enzymatic hydrolysis of cocoyam peels using HCl, H2S04 acids and cellulase enzyme. The cellulase was secreted from Aspergillus Niger (A. niger) fungi. The proximate analysis of the substrate showed that cocoyam peel is a lignocellulosic biomass with a cellulose composition of 48%. The effect of the process parameters (time, temperature, acid concentration and pH) on the yield of glucose in acid and enzymatic hydrolysis of the cocoyam peel was respectively investigated. Maximum glucose yield of 44.5% was obtained after 3 days of enzymatic hydrolysis at 30°C and pH 5. The HCl acid hydrolysis showed a maximum glucose yield of 27.3% at 70°C, 5% HCl after 180 minutes. The glucose yield in H2S04 hydrolysis was relatively lower than that of the HCl with a maximum yield of 26.5% at 70°C, 5% H2SO4 after 180 minutes. In addition to, the functional groups present in the glucose synthesized from cocoyam ground peels and the standard glucose were evaluated using Fourier Transformed Infrared (FTIR). The FTIR results showed similarities in the functional groups present in both sugars. Cocoyam peel can be used for the production of glucose and further fermentative process to produce ethanol.


1955 ◽  
Vol 33 (1) ◽  
pp. 963-969 ◽  
Author(s):  
F. C. G. Hoskin ◽  
G. S. Trick

The hydrolysis of the powerful cholinesterase inhibitor, tabun, at pH 7 to 7.5 by a rat serum enzyme in bicarbonate buffer involves two simultaneous first-order reactions. A fast, enzyme-catalyzed reaction destroys the toxic dextrorotatory isomer of tabun. The much slower hydrolysis of the levorotatory and apparently non-toxic isomer is probably a non-enzymatic reaction. The enzymatic hydrolysis of acetyl-dl-β-methylcholine chloride by a rat brain homogenate has been studied as a model reaction. Only one-half of the racemic compound is hydrolyzed in contrast to the complete hydrolysis of acetylcholine chloride by the same enzyme source. These results and the results of toxicity studies on the hydrolyzing solution indicate that true cholinesterase hydrolyzes only the dextrorotatory isomer of acetyl-dl-β-methylcholine chloride.


1955 ◽  
Vol 33 (6) ◽  
pp. 963-969 ◽  
Author(s):  
F. C. G. Hoskin ◽  
G. S. Trick

The hydrolysis of the powerful cholinesterase inhibitor, tabun, at pH 7 to 7.5 by a rat serum enzyme in bicarbonate buffer involves two simultaneous first-order reactions. A fast, enzyme-catalyzed reaction destroys the toxic dextrorotatory isomer of tabun. The much slower hydrolysis of the levorotatory and apparently non-toxic isomer is probably a non-enzymatic reaction. The enzymatic hydrolysis of acetyl-dl-β-methylcholine chloride by a rat brain homogenate has been studied as a model reaction. Only one-half of the racemic compound is hydrolyzed in contrast to the complete hydrolysis of acetylcholine chloride by the same enzyme source. These results and the results of toxicity studies on the hydrolyzing solution indicate that true cholinesterase hydrolyzes only the dextrorotatory isomer of acetyl-dl-β-methylcholine chloride.


2019 ◽  
Vol 21 (1) ◽  
pp. 83 ◽  
Author(s):  
Ivan Polsinelli ◽  
Rosanna Caliandro ◽  
Nicola Demitri ◽  
Stefano Benini

Given its potential role in the synthesis of novel prebiotics and applications in the pharmaceutical industry, a strong interest has developed in the enzyme levansucrase (LSC, EC 2.4.1.10). LSC catalyzes both the hydrolysis of sucrose (or sucroselike substrates) and the transfructosylation of a wide range of acceptors. LSC from the Gram-negative bacterium Erwinia tasmaniensis (EtLSC) is an interesting biocatalyst due to its high-yield production of fructooligosaccharides (FOSs). In order to learn more about the process of chain elongation, we obtained the crystal structure of EtLSC in complex with levanbiose (LBS). LBS is an FOS intermediate formed during the synthesis of longer-chain FOSs and levan. Analysis of the LBS binding pocket revealed that its structure was conserved in several related species. The binding pocket discovered in this crystal structure is an ideal target for future mutagenesis studies in order to understand its biological relevance and to engineer LSCs into tailored products.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1980-1987
Author(s):  
Shujie Wang ◽  
Jin Sun ◽  
Mengjie Chen ◽  
Xianfeng Hou ◽  
Zhenzhong Gao

The Fenton reaction has been widely used in the pretreatment of lignocellulose. It offers the advantages of simple operation, fast reaction speed, and low pollution. In this study, the effects of different proportions of Fenton reagents on the enzymatic hydrolysis of poplar were compared and analyzed, and the optimal ratio of Fenton reagents was obtained. The maximum yield of enzymatic hydrolysis of glucose in Fenton pretreatment samples was 406 mg/g at H2O2 and Fe2+ concentrations of 1.0 mol/L and 0.01 mol/L, respectively, which was 2.5 times that of untreated samples. Meanwhile, the composition analysis and FT-IR analysis showed that Fenton pretreatment could degrade lignin and hemicellulose effectively. X-ray diffraction (XRD) analysis showed that Fenton pretreatment can partially destroy the amorphous region of poplar. These findings will contribute to efforts to improve the viability of the Fenton pretreatment process for converting biomass into energy.


2007 ◽  
Vol 154 (9) ◽  
pp. D482 ◽  
Author(s):  
P. H. Mugdur ◽  
Y.-J. Chang ◽  
S-.Y. Han ◽  
Y-W. Su ◽  
A. A. Morrone ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3638
Author(s):  
Simone Brethauer ◽  
Andrzej Antczak ◽  
Robert Balan ◽  
Tomasz Zielenkiewicz ◽  
Michael H. Studer

Biomass pretreatment is a mandatory step for the biochemical conversion of lignocellulose to chemicals. During pretreatment, soluble compounds are released into the prehydrolyzate that inhibit the enzymatic hydrolysis step. In this work, we investigated how the reaction conditions in steam explosion pretreatment of beechwood (severity: 3.0–5.25; temperature: 160–230 °C) influence the resulting amounts of different inhibitors. Furthermore, we quantified the extent of enzyme inhibition during enzymatic hydrolysis of Avicel in the presence of the prehydrolyzates. The amounts of phenolics, HMF, acetic acid and formic acid increased with increasing pretreatment severities and maximal quantities of 21.6, 8.3, 43.7 and 10.9 mg/gbeechwood, respectively, were measured at the highest severity. In contrast, the furfural concentration peaked at a temperature of 200 °C and a severity of 4.75. The presence of the prehydrolyzates in enzymatic hydrolysis of Avicel lowered the glucose yields by 5–26%. Mainly, the amount of phenolics and xylose and xylooligomers contributed to the reduced yield. As the maximal amounts of these two inhibitors can be found at different conditions, a wide range of pretreatment severities led to severely inhibiting prehydrolyzates. This study may provide guidelines when choosing optimal pretreatment conditions for whole slurry enzymatic hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document