scholarly journals Measured, calculated and predicted Stark widths of the singly ionized C, N, O, F, Ne, Si, P, S, Cl and Ar spectral lines

2000 ◽  
pp. 15-23 ◽  
Author(s):  
S. Djenize

In order to find reliable Stark width data, needed in plasma spectroscopy comparision between the existing measured, calculated and predicted Stark width values was performed for ten singly ionized emitters: C, N, O, F, Ne Si, P, S, Cl and Ar in the lower lying 3s - 3p, 3p - 3d and 4s - 4p transitions. These emitters are present in many cosmic light sources. On the basis of the agreement between mentioned values 17 spectral lines from six singly ionized spectra have been recommended, for the first time, for plasma spectroscopy as spectral lines with reliable Stark width data. Critical analysis of the existing Stark width data is also given.

1999 ◽  
pp. 5-9
Author(s):  
S. Djenize

The existence of the Stark width dependence on the upper-level ionization potential of the quantum transition have been presented for the four types of transitions (4s? - 4p?, 4p? - 4d?, 4p - 5s, 3d - 4p?) in the singly ionized argon spectrum (Ar II). On the basis of established regularities the Stark width values for 6 spectral lines, not measured or calculated before, have been predicted. Critical analysis of the existing experimental Stark width data are, also, given.


2018 ◽  
Vol 73 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Jhonatha R. dos Santos ◽  
Jonas Jakutis Neto ◽  
N. Rodrigues ◽  
M.G. Destro ◽  
José W. Neri ◽  
...  

In this work, we suggest a methodology to determine the impact parameter for neutral dysprosium emission lines from the characterization of the plasma generated by laser ablation in a sealed chamber filled with argon. The procedure is a combination of known consistent spectroscopic methods for plasma temperature determination, electron density, and species concentration. With an electron density of 3.1 × 1018 cm–3 and temperature close to 104 K, we estimated the impact electron parameter for nine spectral lines of the neutral dysprosium atom. The gaps in the impact parameter data in the literature, mainly for heavy elements, stress the importance of the proposed method.


2014 ◽  
Vol 13 (7) ◽  
pp. 1005-1015 ◽  
Author(s):  
Dirk Ziegenbalg ◽  
Günter Kreisel ◽  
Dieter Weiß ◽  
Dana Kralisch

The use of OLEDs to initiate photochemical reactions is demonstrated for the first time by conducting photooxygenations in a modular microstructured photoreactor.


2020 ◽  
Vol 12 (12) ◽  
pp. 1458-1463
Author(s):  
Li Zhu ◽  
Xiaomeng Chong ◽  
Yu Zhao ◽  
Mingzhe Xu ◽  
Lihui Yin

An inductively coupled plasma spectroscopy method was established to detect 29 elemental impurities in ceftriaxone sodium for injection by nanocomposite, and also used to detect the elemental impurities in the generic, domestic original and foreign original ceftriaxone sodium for injection. This paper for the first time analysed the possible sources of elemental impurities and their potential impacts on the drug quality based on the process. The results showed that zinc and potassium were detected in both the generic drug and the domestic original ceftriaxone sodium for injection, and zinc was not detected but potassium was detected in the foreign original drug; the content of zinc in the generic drug was significantly higher than that in the domestic original drug, and the content of potassium in generic drug and domestic original drug was higher than that in the foreign original drug, according to the process, the elemental impurities may come from the activated carbon or nanocarriers used in the process, and further stability analysis of the samples showed that the stability of the generic drug was slightly lower than that of the original drug, so it was speculated that impurity elements might also be one of the reasons for its instability.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 295-296
Author(s):  
Natalie Hell ◽  
Greg V. Brown ◽  
Jörn Wilms ◽  
Peter Beiersdorfer ◽  
Richard L. Kelley ◽  
...  

AbstractWith the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5 e V, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6 e V resolution shows that the analysis of spectra taken at ECS resolution allows to determine the transition energies of the strongest components.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 354
Author(s):  
Francesco Martoni ◽  
Gary S. Taylor ◽  
Mark J. Blacket

The superfamily Psylloidea includes numerous species which play a key role in Australian ecology and biodiversity, as well as pests and biological control agents, and sometimes threatened species of conservation concern. Different psyllid sampling and collection techniques are usually performed depending on the nature and aim of the study: from the beating and sweeping of psyllid host plants for conservation and biodiversity assessment, to suction and sticky traps in agriculture. Due to a general lack of information on its efficacy for psyllids, however, light trapping has not usually been employed. Here we present the results obtained trapping psyllids using different light sources and we discuss the strengths and weaknesses of this technique to assess psyllid biodiversity. In particular, we highlight the strength of using this methodology paired with DNA barcoding, to cast some light on psyllid biodiversity. The results obtained here suggest that the psyllid fauna of Australia is heavily understudied and the number of undescribed species might be many times higher than previously expected. Additionally, we report, for the first time, the species Trioza adventicia Tuthill 1952, and Cryptoneossa triangula Taylor 1990 in the state of Queensland.


2019 ◽  
Vol 488 (4) ◽  
pp. 5594-5603 ◽  
Author(s):  
A M Popov ◽  
N I Sushkov ◽  
S M Zaytsev ◽  
T A Labutin

ABSTRACT Stark effect is observed in many natural and artificial plasmas and is of great importance for diagnostic purposes. Since this effect alters profiles of spectral lines, it should be taken into account when assessing chemical composition of radiation sources, including stars. Copper is one of the elements which studies of stellar atmospheres deal with. To this end, UV and visible Cu lines are used. However, there is a lack of agreement between existing data on their Stark parameters. It is therefore of interest to obtain new experimental data on these lines and to compare them to previous results. In this work, we have estimated Stark widths and shifts for three blue-green lines at 5105.54, 5153.24, and 5218.20 Å (corresponding transitions are [3d104p] 2P° → [3d94s2] 2D and [3d104d] 2D → [3d104p] 2P°) observed in a ‘long-spark’ laser-induced plasma. For the first time, we have accurately estimated an impact of hyperfine splitting on the profile shapes of the studied lines taking also into account the isotope shifts. We have shown that both effects considerably influence shift and width of Cu i line at 5105.54 Å, and shifts of Cu i lines at 5153.24 and 5218.20 Å.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4374
Author(s):  
Alberto Signoroni ◽  
Mauro Conte ◽  
Alice Plutino ◽  
Alessandro Rizzi

Glare is an unwanted optical phenomenon which affects imaging systems with optics. This paper presents for the first time a set of hyperspectral image (HSI) acquisitions and measurements to verify how glare affects acquired HSI data in standard conditions. We acquired two ColorCheckers (CCs) in three different lighting conditions, with different backgrounds, different exposure times, and different orientations. The reflectance spectra obtained from the imaging system have been compared to pointwise reference measures obtained with contact spectrophotometers. To assess and identify the influence of glare, we present the Glare Effect (GE) index, which compares the contrast of the grayscale patches of the CC in the hyperspectral images with the contrast of the reference spectra of the same patches. We evaluate, in both spatial and spectral domains, the amount of glare affecting every hyperspectral image in each acquisition scenario, clearly evidencing an unwanted light contribution to the reflectance spectra of each point, which increases especially for darker pixels and pixels close to light sources or bright patches.


2012 ◽  
Vol 29 (1) ◽  
pp. 20-28 ◽  
Author(s):  
I. Tapalaga ◽  
I. P. Dojčinović ◽  
M. K. Milosavljević ◽  
J. Purić

AbstractDependences of electron and proton impact Stark width on the upper level ionization potential within different series of the neutral calcium spectral lines have been evaluated and discussed. The similar dependences previously found for the electron impact contribution were also obtained for the proton impact contribution to the Stark broadening. The emphasis is on the term structure influence on the studied Stark width dependences. The influence of the lower transition level and transition term is higher at low temperatures. After establishing these dependences, predictions were made for Stark widths of neutral calcium spectral lines not measured experimentally or calculated theoretically until now.


Author(s):  
Mikhail A. Shvindin ◽  
◽  
Vadim V. Bakhmetyev ◽  

Synthesized recombination-type zinc sulfide phosphors used in solid-state radioluminescent light sources (SSRLS) are the object of the research. In the course of the study, experimental data were obtained for the first time on the effect of the amount of the incorporated activator on the brightness-spectral characteristics of radioluminescence upon excitation by β-radiation of tritium. Data were obtained on the changes in the radioluminescence parameters under various synthesis conditions, phase composition and electron-beam modification of the crystal structure of the initial phosphors. The results of the work make it possible to find the best light compositions for the use in solid-state radioluminescent light sources


Sign in / Sign up

Export Citation Format

Share Document