scholarly journals Study of nanosized hydroxyapatite material annealing at different retention times

2020 ◽  
Vol 52 (4) ◽  
pp. 405-413
Author(s):  
Miljana Mirkovic ◽  
Ljiljana Kljajevic ◽  
Suzana Filipovic ◽  
Vladimir Pavlovic ◽  
Snezana Nenadovic

The aim of the study was to investigate the influence of low heating temperatures with two different retention times to optimize the process for obtaining nanosized hydroxyapatite material that can possibly be used in the fields of biology and pharmacy. Nanosized hydroxyapatite was successfully obtained by wet chemical precipitation. The annealing of the material performed at 300 oC with two different retention times i.e. 3 and 6 hours in air atmosphere. Low annealing temperature with extended retention time was selected in terms to reduce energy consumption. FTIR spectroscopy was used to confirm characteristic vibrational bands of hydroxyapatite samples, and presence of carbonate bands of hydroxyapatite annealed for 3h and 6h. X-Ray powder diffraction analysis were used to examine phase composition, determine the size of unit cells and crystallite sizes, and SEM-EDS methods were used to obtain particle size and arrangement also grain growth morphology and confirmed the presence of calcium, phosphorous oxygen and carbonate peaks. The results show that different retention time has influence on particle growth as well as unit cell parameters and crystallite sizes changes of hydroxyapatite material

2016 ◽  
Vol 869 ◽  
pp. 969-974 ◽  
Author(s):  
Juliana do Nascimento Lunz ◽  
Karla Patricia Macedo Licona ◽  
Alexandre Antunes Ribeiro ◽  
José Angel Delgado ◽  
Lizette Morejón Alonso ◽  
...  

Nanosized hydroxyapatite (HA) with crystallinity and composition similar to bone apatite has been widely investigated in the last years, due to their excellent biocompatibility in bone replacement applications. This bioceramic can be synthesized by many wet chemical and mechanochemical methods. In this paper, nanosized hydroxyapatite powders were synthesized by two wet chemical routes using mechanical stirring method. The first route was used for HA synthesis from CaCl2.2H2O and Na3PO4.12H2O solutions and the second route was from Ca (OH)2 and H3PO4 solutions. The synthesized HA nanoparticles were characterized by Dynamic Light Scattering, BET Surface Area analysis, X-ray Diffraction, Infrared Spectroscopy, chemical analysis and Scanning Electron Microscopy. The results indicated that HA nanoparticles were successfully synthesized by both wet chemical precipitation routes and all powders presented a Ca/P ratio similar to stoichiometric HA, nanoneedles morphology and single HA crystalline phase.


2003 ◽  
Vol 18 (1) ◽  
pp. 38-41
Author(s):  
Herman Koster

X-ray powder diffraction data for In3.85Zr2.80Sn0.35O12 are reported. The powders were prepared using a wet-chemical precipitation method. The XRD data could be fitted with a rhombohedral unit cell in space group R3 (No. 148). The Rietveld refined unit cell parameters are a=0.951 49(2) nm and c=0.889 51(2)nm in a hexagonal setting with Z=3 and Dx=6.69(1)g/cm3.


Author(s):  
Sreedevi Nimishakavi ◽  
V. Madhusudhan Rao ◽  
T. N. Aishwarya ◽  
A. K. Singh

Present work described the effect of natural stabilizers on Ca/P on naturally synthesised and Eco-friendly Nano-HAP powders.Nano- powders were preparedemploying wet chemical precipitation method by adjusting Ca/P between 1.5 to2.2,using different Natural Stabilisers (NSs)such as Rice Water (RcW), Soya Milk (SM), Tea Decoction (TD), Tulsi Leaves (TL), Soya Leaves (SL), Rose Petals (RP), Spinach Leaves (SpL), Gum Kondagogu (GKg) and Aloe Vera (AlV)as precursors. The pH of the powders was varying from 8.1 to 12.8.In this paper, the average crystallite sizes of the samples, pH, therate of reaction, initial temperature and Ca/P of synthesised powders are reported.


Author(s):  
Brandon A. Correa-Piña ◽  
Omar M. Gomez-Vazquez ◽  
Sandra M. Londoño-Restrepo ◽  
Luis F. Zubieta-Otero ◽  
Beatriz M. Millan-Malo ◽  
...  

2012 ◽  
Vol 531-532 ◽  
pp. 250-253 ◽  
Author(s):  
Hong Quan Zhang ◽  
Ming Zhang ◽  
Lu Wei Fu ◽  
Yu Ning Cheng

Zn or Mg ions doped hydroxyapatite (HA) particles were successfully developed by introducing various concentration of Zn or Mg in the starting solution using wet chemical precipitation method and followed a hydrothermal treatment. The products were identified as HA by XRD and FTIR, and the precipitated particles had a rod-like morphology. All the products for Mg and Zn ions concentration in the preparation solution less than 40 mol% were identified as HA. Substitution of Mg and Zn in HA crystal would impair the crystallization of HA and significantly reduce the length of a, c values of HA unit cell, which clearly demonstrated that Mg or Zn ions were structurally incorporated into the apatite crystals, they were not just absorbed on the surface of crystals.


2006 ◽  
Vol 972 ◽  
Author(s):  
Atmane Ait-Salah ◽  
Chintalapalle V Ramana ◽  
François Gendron ◽  
Jean-François Morhange ◽  
Alain Mauger ◽  
...  

AbstractWe present the synthesis and characterization of a novel lithium iron polyphosphate LiFe2P3O10 prepared by wet-chemical technique from nitrate precursors. The crystal system is shown to be monoclinic (P21/m space group) and the refined cell parameters are a=4.596 Å, b=8.566 Å, c=9.051 Å and β=97.46°. LiFe2P3O10 has a weak antiferromagnetic ordering below the Néel temperature TN=19 K. Electrochemical measurements carried out at 25 °C in lithium cell with LiPF6-EC-DEC electrolyte show a capacity 70 mAh/g in the voltage range 2.7-3.9 V.


2017 ◽  
Vol 899 ◽  
pp. 48-53
Author(s):  
Rodrigo Uchida Ichikawa ◽  
Walter Kenji Yoshito ◽  
Margarida Juri Saeki ◽  
Willian C.A. Maranhão ◽  
Fátima Goulart ◽  
...  

Nanostructured Mn-Zn ferrites were synthesized using co-precipitation in alkaline solution with different pH. The samples were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analysis (TG-DTA), dynamic light scattering (DLS) and scanning electron microscopy (SEM) techniques. Monophasic nanoparticles were formed when synthesized with pH 10.5. This sample was heat-treated and its XRD data was refined by the Rietveld method. Mean crystallite sizes and microstrains were determined from X-ray line profile analysis using Single-Line and Warren-Averbach methods, which revealed a mean crystallite size of approximately 10 nm and negligible microstrains. Zn content was estimated using refined cell parameters, giving a value of 33 at %, in accordance with XRF result. TG-DTA revealed that the incorporation of α-Fe2O3 occurs around 1130 °C and 1200 °C with recrystallization of the Mn-Zn ferrite spinel phase. DLS showed that mean particle size increase with temperature up to 1159 nm at 800 °C. SEM analysis showed the samples agglomerate and present similar morphology with negligible size changing when calcined between 280 °C and 800 °C. However, the sample calcined at 1200 °C presents larger agglomerates due to the sintering process.


2013 ◽  
Vol 699 ◽  
pp. 133-137 ◽  
Author(s):  
Byeong Woo Lee ◽  
Jin Heui Koo ◽  
Tae Suk Lee ◽  
Yun Hae Kim ◽  
Jae Suk Hwang

Zinc oxide (ZnO) powders were synthesized by a simple precipitation and a hydrothermal process at the temperature range RT-100°C. In precipitation process, the powders were formed by mixing aqueous solutions of zinc nitrate with NaOH aqueous solution under controlled process conditions such as precursor concentration, reaction pH and temperature. Single phase ZnO particles can be easily synthesized in lower precursor concentration, higher reaction pH and temperature. The powders synthesized at room temperature exhibited plates, rods or pointed multipod morphologies depending on the concentration and pH. ZnO crystallites synthesized by hydrothermal process consisted mostly of well developed large or elongated crystallites of plates or rods in shape. The results reveal that the ZnO crystallite sizes and shapes would be efficiently controllable by changing the processing parameters of the preparation processes.


2021 ◽  
Vol 878 ◽  
pp. 73-80
Author(s):  
Khansaa Al-Essa ◽  
A V Radha ◽  
Alexandra Navrotsky

The nanoscale, cubic silver (I) oxide (Ag2O.nH2O) with different particles sizes and surface areas were synthesized by a wet chemical technique. The prepared crystallite size ranges were from (33.3±0.3 to 39.4±0.4 nm). Interface areas were estimated by comparing the surface areas measured by N2 adsorption to the crystallite sizes refined from X-ray diffraction data. The interface enthalpy of Ag2O.nH2O nanocrystal was measured using isothermal acid solution calorimetry in 25%HNO3 at 26°C. The interface enthalpy was verified by utilizing thermodynamic cycle. The enthalpies of drop solution (ΔHds) for Ag2O.nH2O are exothermic and range from (-62.228±0.197) to (-64.025±0.434 kJ/mol), while its interface enthalpy is (0.842±0.508 J/m2). This work provides the first calorimetric measurement of the interface enthalpy of nanocrystalline silver (I) oxide (Ag2O.nH2O).


Sign in / Sign up

Export Citation Format

Share Document