scholarly journals Selection of building materials based upon ecological characteristics: priorities in function of environmental protection

Spatium ◽  
2009 ◽  
pp. 23-27
Author(s):  
Milica Jovanovic-Popovic ◽  
Saja Kosanovic

Numerous scientific researches show that the activities connected with building materials produce significant negative environmental effects. Observed from the point of architecture, the use of building materials is found to be one of the critical factors of environmental pollution and degradation. The purpose of introducing architectural interventions, including proper selection, is the reduction of the negative environmental impact of building materials. The aim of this paper is to define, from the ecological aspect, basic principles for the selection of building materials. First, principles were defined through the all - inclusive analysis of every phase in the life cycle of building materials. Summing categories: embodied energy and embodied CO2 are discussed afterwards. In the order to simplify the procedure of arriving at a decision, priorities in selection were emphasized in every separate segment of this paper. The selection of building materials with reduced negative environmental impact (ecologically correct building materials) is one of the key decisions in the process of designing ecologically correct buildings.

2013 ◽  
Vol 8 (2) ◽  
pp. 93-102
Author(s):  
Milan Porhincak ◽  
Adriana Estokova

Abstract Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.


2014 ◽  
Vol 905 ◽  
pp. 353-356
Author(s):  
Seung Jun Roh ◽  
Sung Ho Tae

The purpose of this study is to propose a simplified environmental impact assessment method based on selection of major building materials for school buildings in Korea. To accomplish this, environmental impact of 2 school buildings constructed in Korea was assessed according to the procedure of life cycle assessment. In addition, major building materials of school buildings were selected from the perspective of 6 environmental impact categories based on the assessment result, and a method of simplified environmental impact assessment was suggested. On one hand, case analysis verified applicability of the simplified environmental impact assessment method proposed in this study by showing similar value within 10% compared to the assessment result from existing detailed assessment.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


2013 ◽  
Vol 724-725 ◽  
pp. 1597-1601 ◽  
Author(s):  
Ahmad Faiz Abd Rashid ◽  
Sumiani Yusoff ◽  
Noorsaidi Mahat

The introduction of life cycle assessment (LCA) to the building industry is important due to its ability to systematically quantify every environmental impact involved in every process from cradle to grave. Within the last two decades, research on LCA has increased considerably covering from manufacturing of building materials and construction processes. However, the LCA application for buildings in Asia are limited and fragmented due to different research objectives, type of buildings and locations. This paper has attempted to collect and review the application of LCA in the building industry in Asia from the selected publications over the last 12 years, from 2001 to 2012. The result shows that most LCA research basic methodology is based on International Organization of Standardization (ISO) 14040 series but with variance. It is found that the operational phase consume highest energy and concrete responsible for the highest total embodied energy and environmental impact. It also suggested that building material with low initial embodied energy does not necessarily have low life cycle energy. Overall, findings from LCA studies can help to make informed decisions in terms of environmental impact and help realizing sustainable buildings in the future.


2021 ◽  
Vol 26 (2) ◽  
pp. 135-161
Author(s):  
Hirakraj Bapat ◽  
Debasis Sarkar ◽  
Rajesh Gujar

This study aims to develop a methodology for the selection of sustainable building materials for the reduction of embodied and operational energy for a complex infrastructure transportation project, i.e., elevated metro rail station of Ahmedabad, India by application of building information modelling (BIM) and factor comparison method (FCM). Evaluation of the alternative building materials and designs to obtain the best energy efficiency has been carried out using Revit Architecture 2018 and Green Building Studio. The achieved average embodied energy savings is about 73%, which is by the suggested alternative materials instead of existing ones. By application of FCM, which is a multi-criteria decision making (MCDM) technique, it has been observed that the polished Kota-stone flooring, stone-floor tile cladding, toughened fibre-glass ceiling and insulated fibre-glass door appear to be the most feasible sustainable material for flooring, wall cladding, ceiling, openings and fenestrations for the design of the metro rail station box in Ahmedabad, India. This study contributes significant knowledge in the field by highlighting the application of BIM as a tool for sustainable development and recommends a few alternate building materials and sustainable designs which would result in the reduction of energy usage for the metro-rail-station and other building structures leading to a sustainable future.


2020 ◽  
Vol 15 (2) ◽  
pp. 55-62
Author(s):  
Marcela Ondová ◽  
Adriana Eštoková ◽  
Martina Fabianová

AbstractNowadays, the environmental assessment becomes more and more of interest as an additional tool for the decision-makers. The researchers in civil engineering focus on building materials, structures as well as whole buildings environmental evaluation. Analysis of the environmental impact of particular structures may be helpful for selecting building materials, with regard to the environmental performance of buildings in the early project phase. The aim of this paper is presentation of an environmental evaluation of the rarely assessed particular structures – building foundations and the analysis of the share of the building foundations to the overall environmental impact of building as well. The obtained data point to the need to include the environmental impacts of foundations when assessing the buildings, because of it is a necessary part of any type of family house. One kilogram of built-in foundations materials was responsible for emissions of 0.092 kg of greenhouse gases expressed by carbon dioxide (CO2). Embodied energy was calculated as equal to 1.14 MJ per 1kg of foundations materials and 832.2 MJ/m2 per building floor area. The foundation materials of houses contributed to the total environmental impact of the whole buildings by, on average, 15.0 and 22.8 % for embodied energy and global warming potential, respectively.


2014 ◽  
Vol 600 ◽  
pp. 132-143 ◽  
Author(s):  
Daniel Maskell ◽  
Andrew Heath ◽  
Pete Walker

Buildings account for approximately one third of the total worldwide energy emissions, of which approximately a quarter can be attributed to the embodied energy of the building. Current UK legislation for low-energy homes is only concerned with operational energy. Embodied energy, and carbon, is not currently considered but over the design life of an average building is expected to make a significant contribution to the total whole life energy used. Earthen building materials contribute to reduce energy consumption in use through their passive regulation of temperature and humidity. In addition, there can also be significant embodied energy savings compared to other materials. Traditional methods of earthen construction, using locally sourced materials and manual labour require minimal energy for the transport and construction. A greater uptake of earth construction is likely to come from modern innovations such as industrialised manufacture. Extruded fired brick manufacturing processes has the potential to produce a high quality, low cost and low energy product suitable for the mainstream construction sector in both developed and developing nations. By not firing the extruded clay bricks, an embodied energy saving of 86% can be achieved, compared to fired clay, and 25% compared to concrete blocks. However, there are limitations to the structural use of unstabilised earth bricks due to the loss of strength under high moisture content conditions. The use of traditional and novel stabilisation methods can be adopted to address the concerns over strength and durability. Cement and lime are widely used in some countries, but both significantly increase material embodied energy and carbon and can inhibit passive humidity regulation. The paper presents results from a study of the embodied energy of various stabilisers used for unfired clay materials. The Global Warming Potential (GWP) is a measure of the equivalent carbon dioxide that allows for the relative weightings of damaging greenhouse gasses. Both the embodied energy and the GWP figures of various stabilisers are compared and discussed. The conclusion of the work is that there is a maximum quantity of stabiliser than should be used. Typically the quantities of stabiliser are quoted as the amount that gives the maximum strength, but this should take account of not only strength but the environmental impact of achieving the improvement.


Author(s):  
Mahesh Joshi ◽  
Prama Dubey

Background: Port site infections though rare, shall be evaluated and studied so as to improve the quality of healthcare. Materials and Methods: This prospective study was conducted on100 patients of all age group and both sexes with symptomatic cholelithiasis undergoing laparoscopic cholecystectomy were analysed for port site infection. Result:   Out of 100 patients studied only 3 patients presented with port site infection. Conclusion: It is concluded that port site infection are rare in elective laparoscopic cholecystectomy and can be further reduced by proper selection of patients, and strictly following basic principles of laparoscopic cholecystectomy Keywords: Port site infection, laparoscopic, Cholecystectomy


2012 ◽  
Vol 174-177 ◽  
pp. 3161-3165
Author(s):  
Eva Kridlova-Burdova ◽  
Silvia Vilčeková

Since previous instances the requirements of environmental safety, suitability and responsibility of buildings have increased. The criteria of sustainability are included in building environmental assessment systems and tools used in different countries for evaluating their sustainable and environmental performance. The purpose of this paper is to introduce the one of most significant filed in building environmental assessment system (BEAS), which was developed at the Technical University of Košice. The Slovak system was developed on the basis of existing systems used in many countries. BEAS as a multi-criteria system which is incorporated in proposed main fields: site selection&project planning; building construction; indoor environment; energy performance; water management and waste management. Selection of building materials and structures is very important in term of embodied energy and emissions of pollutants. The field of building construction will be introduced in the paper. The aim is also weighting and analysis of significance of building construction indicators in system BEAS with is applicable in Slovak conditions.


2020 ◽  
Vol 12 (21) ◽  
pp. 8838
Author(s):  
Maris Sinka ◽  
Jelizaveta Zorica ◽  
Diana Bajare ◽  
Genadijs Sahmenko ◽  
Aleksandrs Korjakins

The construction industry is one of the largest emitters of CO2 because the production of traditional building materials is highly energy-intensive and uses considerable amounts of raw materials. This research aims to decrease the negative environmental impact of the construction industry by providing biocomposites with a low environmental impact due to their bio-based components and efficient use of the materials through 3D printing. Agricultural waste products—hemp shives—are used in these materials as a filler together with three different types of fast-setting binders—magnesium, calcium sulphoaluminate (CSA) and those that are gypsum-based. The study determines the setting time and compressive strength of these binders, as well as the formation of biocomposites of different densities for different applications; extrusion tests and preliminary life cycle assessment (LCA) are also performed. Results show that biocomposites with hemp shives and fast setting binders have a possible application in 3D printing due to their shape stability and buildability, as well as relatively high compressive strength, which allows for load-bearing use at high densities and thermal insulation use at low densities, although printability at low binder content remains a significant challenge. Preliminary LCA results show that CSA and gypsum binders have the lowest environmental impact from the binders considered.


Sign in / Sign up

Export Citation Format

Share Document