scholarly journals Three dimensional numerical analysis of temperature distribution in an automobile cabin

2012 ◽  
Vol 16 (1) ◽  
pp. 321-326 ◽  
Author(s):  
Gokhan Sevilgen ◽  
Muhsin Kilic

In this study, 3-D numerical analysis of temperature distribution in the automobile cabin were performed by using computational fluid dynamics method. For this purpose, a 3-D automobile cabin including window and outer surfaces was modeled by using the real dimensions of a car. To evaluate the results of numerical analysis according to thermal comfort, a virtual manikin divided into 17 parts with real dimensions and physiological shape was added to the model of the automobile cabin. Temperature distributions of the automobile cabin were obtained from the results of the 3-D steady and transient numerical analyses for standard heating and cooling period. Validations of the results were achieved by comparing to the results of the experimental studies performed simultaneously with the numerical analyses.

Author(s):  
Keiya Fujimoto ◽  
Hiroaki Hanafusa ◽  
Takuma Sato ◽  
Seiichiro HIGASHI

Abstract We have developed optical-interference contactless thermometry (OICT) imaging technique to visualize three-dimensional transient temperature distribution in 4H-SiC Schottky barrier diode (SBD) under operation. When a 1 ms forward pulse bias was applied, clear variation of optical interference fringes induced by self-heating and cooling were observed. Thermal diffusion and optical analysis revealed three-dimensional temperature distribution with high spatial (≤ 10 μm) and temporal (≤ 100 μs) resolutions. A hot spot that signals breakdown of the SBD was successfully captured as an anormal interference, which indicated a local heating to a temperature as high as 805 K at the time of failure.


2019 ◽  
Vol 277 ◽  
pp. 03017
Author(s):  
Xi Feng Yan

This paper presents a numerical finite element model (FEM) investigation on the overall buckling behaviour of hot-rolled (HR), submerged arc welded (SAW) and high-frequency welded (HFW) steel circular columns under axial compression. Three dimensional FEM of circular hollow sections were developed using shell elements considering material nonlinearities, geometric imperfections and residual stress. The established FEM was used to simulate experimental studies conducted by past researchers. Good agreement has been found between numerical analysis and past researchers results, which has validated the reasonability of the FEM to carry out further investigation. Based on the validated FEM, numerical analysis incorporating 180 numerical generated HR, SAW and HFW steel circular columns with various section sizes and slenderness were carried out. The numerical analysis results were compared with the existing column design curves in Chinese, European and American codes. The numerical results showed that the design resistances for hot-rolled and welded steel circular columns calculated based on design curve a in both GB 50017-2003 and Eurocode 3 and the design formula in ANSI/AISC 360-2016 should be accepted. In addition, to further improve the design efficiency, new column design curves for hot-rolled and welded steel circular columns were recommended based on the expressions in GB 50017-2003 and Eurocode 3.


2010 ◽  
Vol 439-440 ◽  
pp. 880-883
Author(s):  
Fu Zhao ◽  
Ping Wang ◽  
Yan Jue Gong ◽  
Yu De Liu ◽  
Hong Bin Xin

With the three-dimensional computational fluid dynamics method, the airflow effects over the huge telescope assemble is investigated in this article. The distributing of velocity field and natural convection are studied by modeling and simulating the turbulent airflow of the huge telescope. Numerical simulations show the best observation direction is the 90o angle between the main optics axis and the horizontal line in which the air velocity distribution is the least. And the air temperature distribution and uniformity around the telescope are also provided by simulation.


Author(s):  
C. Xu ◽  
R. S. Amano

The three dimensional blading had been used for years in the process of turbomachine designs. In need of turbine blade designs in an efficient manner, the current advancement of CFD technologies allows effective 3D predictions of a complex 3D flow field in turbine blade passages, which can improve the turbine blade performances. Since numerous advantages of 3-D CFD usage had been reported in the open literature, many industries already started to use 3D blading in their turbomachines. In addition, a blade lean and a sweep for the blade design had been also implemented to increase the blade row efficiency. Experimental studies have shown some advantages of these lean and sweep features. Most of the experimental results combine many other features together. However, it is difficult to determine what the effects of different features should be. In this study, detailed numerical analyses were developed and these were used to present the results to gain better understanding of different feature of 3D blading for turbine designers and engineers. Throughout this paper performance impacts on different 3D features are presented and the superiority of the present approach is discussed.


2011 ◽  
Vol 490 ◽  
pp. 216-225 ◽  
Author(s):  
Waldemar Karaszewski

The properties of ceramics, specifically low density, high hardness, high temperature capability and low coefficient of thermal expansion are of most interest to rolling element manufacturers. The influence of ring crack size on rolling contact fatigue failure has been studied using numerical fracture analysis. Such cracks are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculation are based on a three dimensional model for the ring crack propagation. The stress intensity factors along crack front are analyzed using a three-dimensional boundary element model. The numerical analysis is verified by experimental studies.


Author(s):  
Anatoly Spirin ◽  
Iryna Gunko ◽  
Igor Tverdokhlib ◽  
Valeriya Vovk

The article deals with one of the ways to improve the energy situation in agriculture of Ukraine, namely to increase the energy efficiency of solar air heaters through the use of granite heat accumulators. In the world, in recent years, the share of energy produced by non-traditional sources has been steadily increasing. Unfortunately, in Ukraine this proportion is much smaller than in the first world countries. This problem is especially relevant for agriculture. The main renewable energy sources for Ukraine's agricultural sector are biofuels (solid, liquid, gaseous), wind and solar. The latter is the most attractive for widespread use in agriculture. After all, for the production of biofuels requires at least land, mechanization and chemistry, etc., for the production of wind energy requires appropriate weather conditions that are not available in most regions of the country. And only solar energy is everywhere and almost always. The difficulty of using solar energy at night is one of the main constraints on the widespread use of solar installations. The use of heat accumulators (in devices that accumulate heat during the day and give it away at night for production purposes) for solar heaters greatly enhances their technological capabilities. Battery material is a variety of materials - from soil to plastic water bottles. This article discusses the theoretical justification (confirmed by experimental studies) of the choice of rational size and shape of granite heat accumulator elements. To simplify the task, it was assumed that the battery element has a spherical shape and its thermophysical characteristics remain constant throughout the process of heating and cooling. As a result of the solution of the differential equation of thermal conductivity for these conditions, the dependence of the liquid temperature distribution depending on the radius and time of heating was obtained. The battery element is fully charged when the liquid temperature in the center and on the surface is equal. The temperature distribution in the middle of the liquid was also determined when cooled. Theoretical calculations were confirmed by experimental studies. To determine the rational parameters of the battery cells, a criterion was proposed, the value of which depends on the ratio of heating and cooling time, heating and cooling temperatures, the location of thermocouples. As a result of theoretical and experimental studies, it is established that the rational size of the granite element of the heat accumulator is an equivalent diameter of 0.3 m. The use of a heat accumulator of this type allows to evaporate more than 300 kg of moisture, which allows to reduce the hay ventilation period, to reduce nutrient losses.


2012 ◽  
Vol 06 ◽  
pp. 570-575
Author(s):  
Hee-Sung Yoon ◽  
Ho-Dong Yang ◽  
Yool-Kwon Oh

The present study was numerically and experimentally investigated on thermal deformation of AC7A and AC4C aluminum alloy used as a casting material for manufacturing automobile tire mold. In this study, temperature distributions of AC7A and AC4C casting material were numerically calculated by finite element analysis (FEA). In order to compare and verify results calculated by numerical analysis, the experiment was carried out on the same condition of numerical analysis. The temperature distribution numerical analysis result revealed that the cooling patterns were predicted almost similar results during cooling process of two casting material. Also, the thermal deformation was calculated from the temperature distribution results. The thermal deformation was closely related to the temperature difference between the surface and inside of the casting.


2019 ◽  
Vol 9 (20) ◽  
pp. 4207 ◽  
Author(s):  
Baek ◽  
Lee ◽  
Kim

In electric vehicles (EVs), the use of high-temperature heat transfer components that effectively block external heat and minimize cooling losses can increase vehicle mileage during heating/cooling operations and improve passenger comfort. In particular, in ensuring high thermal insulation, the car headliner forms an important component for effectively managing environmental heat energy and heating and cooling processes inside the EV. In this study, we have proposed and experimentally verified the use and efficacy of vacuum insulation material in the headliner of EVs to reduce the heat load. The thermal conductivity and air permeability of various conventional insulating and vacuum insulation materials used for the headliner were compared to accurately predict the vacuum insulation material performance. We found that the vacuum insulation material affords reduced surface roughness and thermal conductivity and high formability relative to conventional insulation. We also confirmed consequent improvements in the insulation performance by comparing the characteristics of the proposed vacuum-insulation-material headliner (relative to conventional materials) via prototyping and reliability testing. With the “improved” headliner, in summer, the temperature of the automobile cabin was lowered by 2.8 °C, and the cabin temperature was lowered by 3.9 °C during the cooling period relative to conventional insulators, which proves that the cabin temperature can be maintained at a low value during summer parking or cooling. In winter, the cabin temperature was found to be 7.7 °C higher than that obtained with the conventional insulator, which indicates that the cabin temperature can be maintained higher via reduction in the heat loss (because of using vacuum insulation) under the same heating energy conditions during winter.


Sign in / Sign up

Export Citation Format

Share Document